• Title/Summary/Keyword: 대심도 지하공간

Search Result 79, Processing Time 0.024 seconds

지반굴착 연구 및 기술동향

  • 지반굴착기술위원회
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03a
    • /
    • pp.343-365
    • /
    • 2004
  • 대도시 인구증가와 경제성장으로 인하여 제한된 공간을 효율적으로 사용하기 위한 노력이 계속되어 왔다. 도로의 확충, 지하철 건설, 대형구조물 건설 등 산업인프라의 확충과 더불어 지반굴착이 차지하는 비중이 점점 증대되고 있다. 또한 지상공간에 대한 제한으로 지하공간 활용에 대한 관심이 증대되었고 이에 따라 최근 대심도 굴착사례가 증가되고 있는 실정이다.(중략)

  • PDF

Modeling of rock dilation and spalling in an underground opening at depth (대심도 지하공동에 발생하는 암반의 팽창 및 스폴링 현상 모델링)

  • Cho, Nam-Kak;Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.1
    • /
    • pp.31-41
    • /
    • 2010
  • This paper presents both numerical and physical modeling approaches for the dilation and spalling of rock recognized as typical process of rock around an underground opening at depth. For physical approach, laboratory testing of rectangular beams using a synthetic rock was used to investigate the onset of dilation and spalling. The beams are axially compressed and subjected to 4-point bending to provide non-uniform compressive stresses which are similar to the maximum tangential stress distribution around circular openings. Discrete element numerical analyses using commercial code $PFC^{2D}$ (Particle Flow Code) were performed to evaluate the stress path at various locations in the beams. The findings from these approaches suggest that the onset of dilation in laboratory tests appears to be a good indicator for assessing the stress magnitudes required to initiate spalling.

Conflict analysis and countermeasures due to construction of very-deep tunnels in urban area (도심지 대심도 터널건설에 따른 갈등분석 및 대책)

  • Moon, Joon-Shik;Jeon, Kichan;Kim, Young Geun;Moon, Hoonki
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.371-384
    • /
    • 2021
  • Underground space, especially very-deep tunnel development in urban area, is a good alternative to solve the problem of insufficient ground space, and the need for underground space development is steadily increasing. However, due to the complex and time-consuming nature of design and construction, public conflicts related to the deep tunnel project are getting aggravating and more complex. In addition, since the public budget is mainly invested, when civil complaints arise, they often respond passively, resulting in amplification of conflicts or prolonging the deadlock in many cases. In this study, by analyzing the progress of major conflicts related to the construction of very-deep tunnels in urban area, the causes of conflicts, factors prolonging conflicts, and solutions are reviewed. Through a survey targeting ordinary citizens and tunnel experts, thoughts about the deep tunnel construction and major conflict factors were analyzed, and suggestions for minimizing conflicts were presented. The results of this study can be used to prepare alternatives such as various public involvement measures and improvement of project procedures to form a civic consensus on the construction of very-deep tunnels, and to prepare measures to improve prejudice against very-deep tunnels.

Monitoring Result of Rock Mass Behavior during Excavation of Deep Cavern (대심도 지하 공간 굴착시의 암반거동 - 일본 SUPER KAMIOKANDE의 사례 -)

  • Lee Hong-Gyu
    • Tunnel and Underground Space
    • /
    • v.16 no.1 s.60
    • /
    • pp.11-25
    • /
    • 2006
  • The world's largest nucleon decay experiment facility is constructed at a depth of approximately 1,000 meters, in the Kamio Mine, Japan. The excavated cavern is consisted of a cylinder of 42.4 m high and a semi elliptical dome of 15.2 m high, with a bottom diameter of 40 m. The total excavation volume is approximately $69,000\;m^3$. Because of the character as a large cavern excavation in deep underground, there is many unknown factors in rock mechanics. Based on the results of rock test and numerical analysis, the monitoring of rock mass behavior accompanying progress of construction was performed by various instruments installed in the rock mass surrounding the cavern. The monitoring data was used in the study of measures for cavern stability.

In-Situ Stress Measurements for Excavation of Deep Cavern (대심도 지하 공간 굴착을 위한 초기지압 측정 결과)

  • Lee, Hong-Gyu
    • Tunnel and Underground Space
    • /
    • v.19 no.6
    • /
    • pp.567-582
    • /
    • 2009
  • The world's largest nucleon decay experiment facility is constructed at a depth of approximately 1,000meters, in the Kamioka mine, Japan. Because of the character as a large cavern in deep underground, in-situ stress measurements were conducted to provide basic information for design of the cavern. Three overcoring methods were used: 8-element embedding gauges developed by Japanese Central Research Institute of Electric Power Industry, hemispherical ended borehole technique with eight strain cross-gauges, and Hollow Inclusion Cell with 12 strain gauges. The principle stresses were not perfectly similar in each measurement. The average values of the 6 stress element were used to provide the direction and the magnitude of three principle stress.

Groundwater control measures for deep urban tunnels (도심지 대심도 터널의 지하수 변동 영향 제어 방안)

  • Jeong, Jae-Ho;Kim, Kang-Hyun;Song, Myung-Kyu;Shin, Jong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.403-421
    • /
    • 2021
  • Most of the urban tunnels in Korea, which are represented by the 1st to 3rd subways, use the drainage tunnel by NATM. Recently, when a construction project that actively utilizes large-scale urban space is promoted, negative effects that do not conform to the existing empirical rules of urban tunnels may occur. In particular, there is a high possibility that groundwater fluctuations and hydrodynamic behavior will occur owing to the practice of tunnel technology in Korea, which has mainly applied the drainage tunnel. In order to solve the problem of the drainage tunnel, attempts are being made to control groundwater fluctuations. For this, the establishment of tunnel groundwater management standard concept and the analysis of the tunnel hydraulic behavior were performed. To prevent the problem of groundwater fluctuations caused by the construction of large-scale tunnels in urban areas, it was suggested that the conceptual transformation of the empirical technical practice, which is applied only in the underground safety impact assessment stage, to the direction of controlling the inflow in the tunnel, is required. And the relationship between the groundwater level and the inflow of the tunnel required for setting the allowable inflow when planning the tunnel was derived. The introduction of a tunnel groundwater management concept is expected to help solve problems such as groundwater fluctuations, ground settlement, depletion of groundwater resources, and decline of maintenance performance in various urban deep tunnel construction projects to be promoted in the future.

A Study on site selection criteria and discharge capability evaluation for the multi-purpose use of a double-deck tunnel in a great depth (대심도 복층터널의 다목적 활용을 위한 입지선정 및 통수성능 평가)

  • Moon, Hoon-Ki;Kil, Ki- Oh;Song, In-Cheol;Lee, Hye-Yoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.3
    • /
    • pp.283-290
    • /
    • 2016
  • Recent, the construction of the multi-purpose double-deck tunnel is required to solve the flood protection and congested area at urban city. The multi-purpose double-deck tunnel is desperately needed for the introduction of efficient utilization of underground space in addition to the main feature of road capabilities. A basic review was performed for site selection to consider the control capability and features of road tunnel at the same time, and the processable flow in accordance with tunnels cross section of double deck tunnel. Site Selection Criteria for multi-purpose use of the double-deck tunnel has been proposed through the site selection criteria by use of the tunnels review. Also the estimation processable flow was performed to review the versatility of double-deck tunnel due to design of tunnel cross-section. Site Selection of double-deck tunnel from this study can be seen the need for a complex consideration through a variety of analyzes.

A study on the fire smoke diffusion delay strategy in a great depth underground double deck tunnel junction (대심도 복층터널 교차로 화재연기 확산지연 방안 연구)

  • Shin, Tae-Gyun;Moon, Jung-Joo;Yang, Yong-Won;Lee, Yun-Taek;Han, Jae-Hee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.115-126
    • /
    • 2019
  • Recently, in order to solve the traffic congestion in urban areas and to improve the peripheral environment, research on the design and construction technology development of great depth underground double-deck tunnel is under way by using the underground space in the urban area. The network type double-deck tunnel is in the form of an intersection with a small cross section and a steep slope as per construction at the base of a flatland, so that the fire smoke spreads rapidly in case of fire, which is expected to cause damage of human life. Therefore, this study is analyzed the delay effect of fire smoke diffusion according to the installation and non - installation of delay system for fire smoke diffusion at the intersection. Fire fumes were delayed up to 270 seconds when the delay system for fire smoke diffusion was installed at the intersection and it is analyzed that the greater the operating area of the delay system for fire smoke diffusion, the more preventable the damage of human life of the intersection.

도심지 대심도 장대지하차도의 방재 대책

  • Kim, Nam-Yeong;Jo, Jong-Bok;Kim, Jae-Wan
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.40 no.4
    • /
    • pp.4-10
    • /
    • 2011
  • 자동차의 대중화와 인구집중화로 인하여 대도시의 경우 지하공간에 도로를 설치하려는 계획이 많아지고 있다. 그 계획에 대하여 장점을 찬성하는 사람들도 있지만 안전에 관하여 많은 사람들이 우려를 하고 있다. 그러므로 장대지하차도의 국내외 사례를 확인하고 재해에 대한 방재대책에 관하여 살펴보고자 한다.

  • PDF