• Title/Summary/Keyword: 대변형 해석

Search Result 230, Processing Time 0.025 seconds

Form-finding of Free-form Membrane Structure based on Geometrically Non-linear Analysis and Interface method (기하학적 비선형해석을 이용한 비정형 막 구조물의 형상탐색과 인터페이스 기법)

  • Kim, Jee-In;Na, Yoo-Mi;Kang, Joo-Won;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.1
    • /
    • pp.77-85
    • /
    • 2012
  • The membrane structure maintains stable form by giving initial tension to ductile membrane and increasing the stiffness of exterior that is much adopted in the large span spatial structure by making its thickness thin. This kind of membrane structure has characteristic that can express free-form curve, so the selection of structural form is very important. So, this paper proposes the expression of free-form surface based on NURBS basis function and the finite element method considering geometrical nonlinearity for the deduction of large deformation result. Also, for minimizing the approximation of the surface that is derived from the form-finding result, the interface method that change finite element mesh to NURBS is proposed. So, the optimum surface of free-form membrane is derived.

Dynamic Response Analysis of Nonlinear Sloshing in Two Dimensional Rectangular Tank using Finite Element Method (유한요소법을 이용한 2차원 사각탱크내 비선형 슬로싱 동응답 해석)

  • 조진래;이홍우;하세윤;박태학;이우용
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.33-42
    • /
    • 2003
  • This paper deals with the FEM analysis of nonlinear sloshing of incompressible, invicid and irrotational flow in two dimensional rectangular tank. We use laplace equation based on potential theory as governing equation. For large amplitude sloshing motion, kinematic and dynamic free surface conditions derived from Bernoulli equation are applied. This problem is solved by FEM using 9-node elements. For the time integration and accurate velocity calculation, we introduce predictor-corrector time marching scheme and least square method. Also, numerical stability in tracking of free surface is obtained by direct calculation of free surface location to time variation. Numerical results of sloshing induced by harmonic excitations, while comparing with those of linear theory and references, prove the accuracy and stability. After verification of our program, we analyze sloshing response characteristics to the fluid height and the excitation amplitude.

A Two Mobilized-Plane Model for Soil Liquefaction Analysis (액상화해석을 위한 두 개의 활성면을 가진 구성모델)

  • Park, Sung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.173-181
    • /
    • 2006
  • A Two Mobilized-Plane Model is proposed for monotonic and cyclic soil response including liquefaction. This model is based on two mobilized planes: a plane of maximum shear stress, which rotates, and a horizontal plane which is spatially fixed. By controlling two mobilized planes, the model can simulate the principal stress rotation effect associated with simple shear from different $K_0$ states. The proposed model gives a similar skeleton behaviour for soils having the same mean stress, regardless of $K_0$ conditions as observed in laboratory tests. The soil skeleton behaviour observed in cyclic drained simple shear tests, including compaction during unloading and dilation at large strain is captured in the model. Undrained monotonic and cyclic response is predicted by imposing the volumetric constraint of the water on the drained or skeleton behaviour. This constitutive model is incorporated into the dynamic coupled stress-flow finite difference program of FLAC (Fast Lagrangian Analysis of Continua). The model was first calibrated with drained simple shear tests on Fraser River sand, and verified by comparing predicted and measured undrained behaviour of Fraser River sand using the same input parameters.

Analysis of Frictional Contact Problems of Nonlinearly Deformable Bodies by Using Contact Error Vector (접촉 오차 벡터를 이용한 비선형 변형체의 마찰접촉 해석)

  • Lee, Kisu;Kim, Bang-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.3
    • /
    • pp.305-319
    • /
    • 2000
  • Numerical solution lot frictional contact problems of nonlinearly deformable bodies having large deformation is presented. The contact conditions on the possible contact points are expressed by using the contact error vector, and the iterative scheme is used to reduce the contact error vector monotonically toward zero. At each iteration the solution consists of two steps : The first step is to revise the contact force by using the contact error vector given by the previous geometry, and the second step is to compute the displacement and the contact error vector by solving the equilibrium equation with the contact force given at the first step. Convergence of the iterative scheme to the correct solution is analyzed, and the numerical simulations we performed with a rigid-plastic membrane and a nonlinear elastic beam.

  • PDF

A study on the liquefaction analysis using the large deformation theory (대변형 이론을 이용한 액상화 해석에 관한 연구)

  • Moon, Yong;Lee, Kang-Il;Kim, Tae-Hoon;Im, Eun-Sang;Lee, Yong-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1348-1357
    • /
    • 2006
  • For the rational aseismatic design of a structure constructed on the ground which has weakness for liquefaction or flow, it is necessary to predict ground deformation as well as force acting on the ground. In general, the prediction of liquefaction is based on solid mechanics while the prediction of flow is basis of fluid mechanics. Since liquefaction and flow occur continuously, unified analysis methods have been developed. Among of them is Rue-elasto plastic model that is based on small deformation theory. This methods, however, is not adequate for such a large deformable ground condition. In this paper, a large deformaion theory using the finite deformation theory proposed by Dietal and the updated lagrangian method is presented. In addition, the applicability of the theory is verified by 1-d consolidation analysis and flow tests.

  • PDF

Dynamic Analysis of a Very Flexible Cable Carrying A Moving Multibody System (다물체 시스템이 이동하는 유연한 케이블의 동역학 해석에 관한 연구)

  • 서종휘;정일호;한형석;박태원
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.2
    • /
    • pp.150-156
    • /
    • 2004
  • In this paper, the dynamic behavior of a very flexible cable due to moving multibody system along its length is presented. The very deformable motion of a cable is presented using absolute nodal coordinate formulation, which is based on the finite element procedures and the general continuum mechanics theory to represent the elastic forces. Formulation for the sliding joint between a very flexible beam and a rigid body is derived. In order to formulate the constraint equations of this joint, a non-generalized coordinate, which has no inertia or forces associated with this coordinate, is used. The modeling of this sliding joint is very important to many mechanical applications such as the ski lifts. cable cars, and pulley systems. A multibody system moves along an elastic cable using this sliding joint. A numerical example is shownusing the developed analysis program for flexible multibody systems that include a large deformable cable.

대변형 해석에서 평활화를 이용한 사면체 요소망의 재조성

  • Gwon, Gi-Hwan;Chae, Su-Won;Sin, Sang-Yeop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2397-2405
    • /
    • 2000
  • The remeshing is a method to replace a distorted mesh by a new mesh without interrupting the finite element calculation. The remeshing procedure in this paper refers to the rezoning, for which a sm oothing process is developed to alleviate the distortions of mesh. In the paper, an automatic finite element rezoning system with tetrahedral elements for large deformation analysis has been developed. Our smoothing process is composed of two steps, a surface smoothing and a volume smoothing. In the surface smoothing, checking the dihedral angle and projection on surface patch reduced the change of shape and nodes penetrating die. The constrained Laplacian smoothing has been employed for the volume smoothing process. The state variables are mapped from old mesh to new mesh by using volume coordinates within a tetrahedral element. All these procedures have been linked to the NIKE3D program As illustrated in the examples the overall strategy ensures a robust and efficient rezoning scheme for finite element simulation of metal-forming processes.

A Study on the Post-Buckling Analysis of Spatial Structures Using Dynamic Relaxation Method (동적이완법을 이용한 후좌굴 해석법의 Hybrid 구조물의 적용성 평가)

  • Lee, Kyong-Soo;Lee, Sang-Ju;Han, Sang-Eul
    • Proceeding of KASS Symposium
    • /
    • 2006.05a
    • /
    • pp.58-65
    • /
    • 2006
  • The present study is concerned with the application of dynamic relaxation method in the investigation of the large deflection behavior of spatial structures. The dynamic relaxation do not require the computation or formulation of any tangent stiffness matrix. The convergence to the solution is achieved by using only vectorial quantities and no stiffness matrix is required in its overall assembled form. In an effort to evaluate the merits of the methods, extensive numerical studies were carried out on a number of selected structural systems. The advantages of using dynamic relaxation methods, in tracing the post-buckling behavior of spatial structures, are demonstrated.

  • PDF

Limit Loads for Circular Wall-Thinned Feeder Pipes Considering Bend Angle (굽힘각도를 고려한 원형 감육이 발생한 중수로 피더관의 한계하중)

  • Bae, Kyung-Dong;Je, Jin-Ho;Kim, Jong-Sung;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.3
    • /
    • pp.313-318
    • /
    • 2012
  • In CANDU, feeder pipes supply heavy water to pressure tube and steam generator. Under service conditions, Flow-Accelerated Corrosion (FAC) produces local wall-thinning in the feeder pipes. The wall-thinning in these pipes affects the integrity of the piping system, as verified in previous research. This paper provides limit loads for wallthinned feeder pipes with $45^{\circ}$ and $60^{\circ}$ bend angles, and proposes an equation that predicts the limit loads for wallthinned feeder pipes with arbitrary bend angles. On the basis of finite element limit analyses, limit loads are obtained for wall-thinned feeder pipes under in-plane bending and internal pressure. There are two cases of in-plane bending: the in-plane closing direction and the in-plane opening direction. The material is considered the effect of the large deformation, so an elastic-perfectly-plastic material is assumed in the calculations.

Limit Loads for Circular Wall-Thinned Feeder Pipes Subjected to Bending and Internal Pressure. (원형 감육이 발생한 중수로 피더관의 한계하중 평가)

  • Je, Jin-Ho;Lee, Kuk-Hee;Chung, Ha-Joo;Kim, Jong-Sung;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1675-1680
    • /
    • 2010
  • Flow Accelerated Corrosion (FAC) occurring during in-service conditions results in localized wall-thinning in the feeder pipes of CANDU. The wall-thinning of the feeder pipes is the main degradation mechanisms affecting the integrity of piping systems. In this paper, we assess the integrity of wall-thinned feeder pipes by limit load analysis. The limit loads for wall-thinning feeder pipes subjected to in-plane bending and internal pressure were determined on the basis of finte element limit analyses. The limit loads are determined from the results of limit analyses of elasticperfectly-plastic materials using the large geometry change. Closed-form approximations of limit load solutions for wall-thinning feeder pipes subjected to in-plane bending and pressure are proposed.