• Title/Summary/Keyword: 대변형 해석

Search Result 230, Processing Time 0.028 seconds

Finite Element Analyses on the Behavior of Overall Strain Range using ABAQUS Code. (ABAQUS 코드를 이용한 전체 변형률 영역의 거동에 대한 유한요소해석)

  • 오세붕;전병곤;한성수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.55-62
    • /
    • 2002
  • 미소변형에서 대변형에 이르는 전체 변형률 영역의 구성모델을 ABAQUS 코드에 구현하였다. 구성모델은 비등방경화규칙에 근거한 전응력 개념의 탄소성 모델로 연약 점토나 풍화토에 적용하는 것이 가능하다. 사용된 정식화 및 알고리즘은 (1) Jaumann 응력속도를 이용한 대변형도 조건 정식화 (2) 내재적인 응력적분 (3) 일관된 접선계수를 포함하고 있다. 이를 통하여 대변형 해석을 정확하고 효율적으로 수행할 수 있었다. 예제를 통하여 새로운 구성모델과 ABAQUS 코드를 이용한 대변형 해석을 수행할 수 있음을 확인하였다. 특히 전체변형률 영역의 거동을 모델하고 범용 해석 프로그램을 이용한 비선형 대변형 해석에 적용하는 것이 가능하였다.

  • PDF

Large Deformation and Inelastic Analysis of API X80 Steel (API X80 강의 대변형 비선형 해석)

  • Lee, Seung-Jung;Yoon, Young-Cheol;Zi, Goang-Seup;Cho, Woo-Yeon;Yu, Seong-Mun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.375-378
    • /
    • 2009
  • 본 논문에서는 API X80 강의 대변형 비선형 거동을 모사하기 위해 비선형 유한요소해석을 수행하였다. 고강도 강재의 거동을 모사하기 위해 GTN(Gurson-Tvergaad-Needleman) 모델을 사용하였으며, 비선형 해석을 위해 범용 유한요소해석 프로그램인 ABAQUS와 User Subroutine의 사용자 재료모델(UMAT)을 연계하여 사용하였다. 해석결과와 인장실험의 결과와의 비교를 통해 GTN 모델에서 사용되는 재료모델 상수를 도출하였고, 도출된 값들은 개발된 사용자 재료모델과 함께 API X80 강의 각종 실험을 모사하고 대변형 상황의 강재 파이프의 거동을 분석하는데 유용하게 사용될 수 있다.

  • PDF

A Study on the 3D Analysis of Debris Flow Based on Large Deformation Technique (Coupled Eulerian-Lagrangian) (대변형 해석기법(Coupled Eulerian-Lagrangian)을 이용한 3차원 토석류 거동분석)

  • Jeong, Sang-Seom;Lee, Kwang-Woo;Ko, Jun-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.12
    • /
    • pp.45-57
    • /
    • 2015
  • This paper presents the application of the Coupled Eulerian-Lagrangian (CEL) technique to simulate the debris flow. The main objective of this study is to investigate the applicability of CEL technique to the behavior of debris flow, such as flow velocity and influence area. Comprehensive studies to verify the behavior of debris flow are presented in this study. Through comparison with measured flow velocity from Umyeonsan (Mt.), CEL approach was found to be in good agreement with the general trend observed by in actual debris flow. In addition, CEL technique accurately simulated the behavior of debris flows, therefore, it can be used for designing the countermeasure structure.

Large Deformation Analysis Using and Anistropic Hardening Constitutive Model : I. Formulation (비등방경화 구성모델을 이용한 대변형 해석 : I. 정식화)

  • 오세붕
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.207-214
    • /
    • 2002
  • A constitutive model was implemented in ABAQUS code, The constitutive equation can model the behavior for overall range of strain level from small to large deformation, which is based on anisotropic hardening rule and total stress concept. The formulation includes (1) finite strain formulation on the basis of Jaumann rate, (2) implicit stress integration and (3) consistent tangent moduli. Therefore, the mathematical background was established in order that large deformation analysis can be performed accurately and efficiently with the anisotropic constitutive model. Companion paper(Jeon et al., 2002) will contain the large deformation analysis results of examples with the constitutive model using ABAQUS.

A Study on the 3D Analysis of Driven Pile Penetration Based on Large Deformation Technique (Coupled Eulerian-Lagrangian) (대변형 해석기법(Coupled Eulerian-Lagrangian)을 이용한 항타 관입성 모사의 3차원 해석)

  • Ko, Jun-Young;Jeong, Sang-Seom;Lee, Seung-Yeon
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.8
    • /
    • pp.29-38
    • /
    • 2015
  • This paper presents the application of the Coupled Eulerian-Lagrangian (CEL) numerical technique to simulate the driving of open-ended piles into sandy soil. The main objective of this study was to investigate the applicability of CEL technique to the behavior of the driven pile penetration. Comprehensive studies to verify the behavior of driven pile penetration are presented in this paper. Through comparison with results of field load tests, the CEL methodology was found to be in good agreement with the general trend observed by in situ measurement, and the CEL approach accurately simulated the behavior of driven pipe piles.

A Dynamic Behavior of Rubber Component with Large Deformation (대변형을 하는 고무 부품의 동적 거동)

  • Cho Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.6
    • /
    • pp.536-541
    • /
    • 2005
  • Large displacement and rigidity about rubber component are expected by nonlinear and large deformation analysis in this study. Rubber is also used by the model of Mooney-Rivlin and the self contact between rubbers is established. There is the friction between rigid body and rubber, wall and floor. The nonlinear simulation analysis used in this study is expected to be widely applied in design, analysis and development of several rubber components which are used in automotive, railroad, and mechanical elements etc. By utilizing this method, time and cost can also be saved in developing new rubber product. The analysis of rubber components requires special material modeling and non-linear finite element analysis tools that are quite different from those used for metallic parts. The objective of this study is to analyze the rubber component with large deformation and non-linear properties.

  • PDF

An Analytical Investigation on the Ultimate Strength of Concrete-Filled Steel Tube Columns using Elasto-Plastic Large Deformation Analysis (탄소성 대변형 해석을 이용한 콘크리트 충전강관(CFT) 기둥의 극한강도에 관한 해석적 연구)

  • Jang, Gab-Chul;Chang, Kyong-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.6
    • /
    • pp.69-74
    • /
    • 2007
  • Recently, to improve performance and strength of circular steel columns, application of concrete-filled steel tube(CFT) type are gradually increased. To accurately predict the plastic design of concrete-filled steel tube columns, a plasticity model is required which can be describe large deformation behavior of concretes and steels. In this study, elastic-plastic large deformation analysis is developed by using the plasticity model of structural steels, and accurate and validity of the developed program is verified by comparing between the experiment and the analysis for concrete-filled steel tube column. In concrete-filled steel tube columns, influence of initial deflection on ultimate strength behavior is investigated by using developed program.

  • PDF

Numerical Formulation of Consolidation Based on Finite Strain Analysis (대변형 압밀방정식의 수식화)

  • Shin, Ho-Sung;Lee, Seung-Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.6
    • /
    • pp.77-86
    • /
    • 2013
  • Embankments on soft ground experience significant deformation during time-dependent consolidation settlement, as well as an initial undrained settlement. Since infinitesimal strain theory assumes no configuration change and minute strain during deformation, finite strain analysis is required for better prediction of geotechnical problems involving large strain and geometric change induced by imposed loadings. Updated Lagrangian formulation is developed for time-dependent consolidation combining both force equilibrium and mass conservation of fluid, and mechanical constitutive equation is written in Janumann stress rate. Numerical convergence during Newton's iteration in large deformation analysis is improved by Nagtegaal's approach of considering the effect of rotation in mechanical constitutive relationship. Numerical simulations are conducted to discuss numerical reliability and applicability of developed numerical code: deformation of cantilever beam, two-dimensional consolidation. The numerical results show that developed formulation can efficiently describe large deformation problems. Proposed formulation is expected to facilitate the upgrading of a numerical code based on infinitesimal strain theory to that based on finite strain analysis.

Finite Element Method for Failure Analysis Considering Large Deformation and Strain Softening (대변형 탄소성유한요오법에 의한 재료의 연화현상을 고려한 파괴거동해석)

  • 김영민
    • Geotechnical Engineering
    • /
    • v.13 no.2
    • /
    • pp.29-38
    • /
    • 1997
  • Strain softening is observed for geomaterials such as rocks when they are sheared. The proper computational modelling for strain softening is very important because this behavior is closely related to failure in geotechnical problems. In this paper, we have investigated the proper FEM techniques for modelling strain softening in order to simulate failure behavior numerically. In showing numerical examples, the effects of element shape, mesh pattern and of imperfection and the difference between small and large deformation theories, of displacement control and pressure control after peak have been discussed.

  • PDF

회전 핀에 의한 이동 하중에 따른 보의 대변형 수치 해석

  • 정일섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.65-65
    • /
    • 2004
  • 스프링은 변위에 상응하는 에너지를 저장하는 기계 요소로서 다양한 분야에 적용되고 있으며, 나선형(helical) 스프링, 와선형(spiral) 스프링, 비틀림 막대, 디스크(disk) 스프링, 판(plate) 스프링, 일정 하중(constant force) 스프링 둥 다양한 종류가 있다. 근래 많이 사용되는 LCD 모니터 가운데 일부는 경사(tilt), 회전(pivot), 방향 전환(swivel) 등 모니터의 각도 변화가 가능하도록 제작되며, 이러한 각도 변화시 사용자가 적절한 반력을 느끼도록 인간 공학적으로 설계되어 있다.(중략)

  • PDF