• Title/Summary/Keyword: 대목

Search Result 297, Processing Time 0.029 seconds

Effects of Times of Chip Budding and Rootstock Removal, Leaf Removal Plus Promalin Application on the Tree Growth and Lateral Development for 'Fuji'/M.9-T337 Nursery Trees ('Fuji'/M.9-T337 묘목의 삭아접 시기, 대목절단 시기, 적엽 및 Promalin 처리가 나무의 생장과 측지발생에 미치는 효과)

  • Park, Jeong-Gwan;Hong, Jae-Seong;Choi, In-Myung;Kim, Jung-Bae;Yun, Cheon-Jong;Jeon, Seong-Ho
    • Horticultural Science & Technology
    • /
    • v.17 no.3
    • /
    • pp.329-332
    • /
    • 1999
  • The objective of this study was to determine the influence of grafting timing, rootstock cut timing and leaf removal with promalin ($GA_{4+7}+BA$) treatments on the maiden tree growth, lateral development and flower bud initiation. In mid-March 1997, two-year-old M.9-T337 rootstocks selected with trunk diameter over 1 cm were planted in the field. Chip budding with 'Fuji' scion on M.9-T337 rootstock budded in mid-April was earlier in sprouting than chip budding in mid-June. Late cutting chip budding (LCCB) with 'Fuji' scion on M.9-T337 rootstock was lower in the failed budding percentage with 14% than that of early cutting chip budding (ECCB). Especially, ECCB in April was not suitable for scion growth such as uniformity with high percentage of failed tree. Grafting timing in mid-June and rootstock cutting timing of LCCB induced more branches and flower buds than other treatments. Removal of 8 to 10 uppermost immature leaves on central leader stem and application of Promalin 250 mg/L after every 30 cm of terminal growth produced a 189 cm tall tree with 9 flower buds and 14.2 short lateral shoot from 30 to 35 cm long in length in 1998. Promalin increased branching on second-season growth and, when combined with leaf removal, resulted in uniform distribution of branches along the central leader stem.

  • PDF

Characterization of Blooming on Cucumber Fruits (오이 과실 표면의 과분 발생 특성)

  • Choi, Eung Kyu;Kim, Byung-Soo;Hwang, Un Sun;Do, Han Woo;Suh, Dong Hwan
    • Horticultural Science & Technology
    • /
    • v.31 no.2
    • /
    • pp.159-164
    • /
    • 2013
  • A white powder-like substance, so called 'bloom', is formed on the surface of fruits of many varieties of cucumber. Although it is a natural phenomenon, bloomed fruits are accepted lower in quality compared to bloomless fruits by consumers. The experiments were conducted to obtain basic informations for breeding rootstocks, and to develop promising bloomless rootstocks from basic source materials collected and selected by seed company. The surfaces of bloomless fruits were appeared on the bladder cell of glandular trichome and the epicuticular waxes. Those of bloom fruits appeared with an injured bladder cell and many particles, which were not seen on those of bloomless fruits. The chromaticity was investigated on the surface of the bloom and the bloomless fruits. The 'a' and 'b' value of the bloom and the bloomless fruits did not show any significant difference. The 'L' value was significantly different and that of bloom fruits was higher than that of bloomless fruits. Fruit Si content was conspicuously lower in the fruits of cucumber plants grafted on the bloomless rootstock than in the fruits of those grafted on general bloom rootstocks.

Changes of Growth and Yield by using Rootstocks in Tomato (대목사용에 따른 토마토의 생육 및 수량 변화)

  • Lee, Hyewon;Hong, Kue Hyon;Kwon, Deok Ho;Cho, Myeong Cheoul;Lee, Jun Gu;Hwang, Indeok;Ahn, Yul Kyun
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.456-463
    • /
    • 2020
  • This research was conducted to examine the changes in yield and difference in growth, using rootstocks in tomatoes as the growth indicators. Seedlings of tomato 'Gama', were used as scion and non-grafted control, while 4 different grafted tomatoes 'Powerguard', 'T1', 'L1', and 'B.blocking' were used as rootstocks. The non-grafted and grafted plants were grown in hydroponics for long-duration cultivation under plastic greenhouse conditions. The total yield of grafted tomato 'Powerguard' and non-grafted tomato 'Gama' were 8,428 g and 7,645 g, respectively. The flowering position of grafted plants 'B.blocking' and non-grafted plants at the latter period were 17.58 cm and 14.92 cm, respectively. The results showed that the yield and the balance of the plant were improved until the end of the harvest by grafting. The difference in yield between non-grafted and grafted tomatoes was evident in the 19th cluster, 236 days after planting. Therefore using rootstocks could be advantageous for long-duration cultivation in tomatoes.

Cucumber green mottle mosaic virus Moved into the Non-Host Figleaf Gourd Passing through Cucumber in Grafting System (오이/흑종호박 접목에서 오이녹반모자이크바이러스의 비기주 대목인 흑종호박으로 이동)

  • Choi, Gug-Seoun;Lee, Jin-A;Cho, Jeom-Deog;Chung, Bong-Nam;Cho, In-Sook
    • Research in Plant Disease
    • /
    • v.15 no.2
    • /
    • pp.68-71
    • /
    • 2009
  • Cucumber green mottle mosaic virus (CGMMV) was not infected in figleaf gourd by sap inoculation. However CGMMV was detected by RT-PCR from the figleaf gourd collected from a field growing cucumber grafted onto figleaf gourd in Cheonan, Chungcheongnam Province in 2008. Which field showed 100% infection rate of the virus disease. In the experiment grafted with cucumber onto figleaf gourd, transportation of CGMMV through cucumber to figleaf gourd was confirmed by RT-PCR when the virus was mechanically inoculated on the leaves of the cucumber. The amplified DNA concentration of the virus on electrophoresis gel was much higher in the cucumber than in the figleaf gourd. However, the virus particles from the figleaf gourds were not observed under electron microscopy, also sap of the figleaf gourds was not transmittable to Nicotiana benthamiana. To identify the existence of CGMMV particle, the virus was purified from figleaf gourd and cucumber growing together in the graft system. CGMMV solution extracted from the cucumber represented a typical absorption spectrum of the virus but that from the figleaf gourd did not. Only a few CGMMV particles were observed in the purified preparation from the figleaf gourd. These results confirmed that CGMMV only passed through figleaf gourd in the grafting system. This study indicated that figleaf gourd is not a host of CGMMY.

Influence of Low Temperature and Chilling Time on Freezing Hardness of Apple Dwarf-rootstocks and Main Cultivars in Korea (저온 및 저온경과시간이 사과나무 왜성대목 및 주요품종의 내동성에 미치는 영향)

  • Kweon, Hun-Joong;Sagong, Dong-Hoon;Song, Yang-Yik;Park, Moo-Yong;Yoon, Tae-Myung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.1
    • /
    • pp.59-71
    • /
    • 2014
  • This study was conducted to find out the freezing hardness of apple tree as influenced by dwarfrootstocks, cultivars, and low temperature treatments. The dwarf-rootstocks used were M.9 and M.26, and three cultivars used were early-maturing 'Tsugaru', mid-maturing 'Hongro', and late-maturing 'Fuji'. Chilling temperatures were applied from $0^{\circ}C$ to $-40^{\circ}C$. Checking points of apple tree for freezing hardness were rootstock, trunk, feather, floral bud and foliar bud. Investigations were evaluated by the measure of water loss, electrolyte leaching, and sprouting. The results did not show the differences in water loss, electrolyte leaching, and sprouting by dwarf-rootstocks. Water loss of 'Fuji' was lower than that of 'Tsugaru' and 'Hongro', but sprouting ratio of 'Fuji' was higher than that of 'Tsugaru' and 'Hongro'. Water loss and electrolyte leaching increased as treated by lower temperature, while sprouting ratio decreased. In $-35^{\circ}C$ treatment, sprouting of rootstock and trunk part were higher than that of feather, while sprouting of floral bud was lower than that of foliar bud. Sprouting of bourse shoot at the accumulated low temperature in terms of $-10^{\circ}C$ per day was 100% in the 28 days, and sharply decreased about 50% in the 35 days. In conclusion, there were no differences in freezing hardness between M.9 and M.26, but freezing hardness of late-maturing cultivar was tended to stronger than that of early-maturing and mid-maturing cultivars. Freezing hardness of floral bud was extremely weak $-30^{\circ}C$.