• Title/Summary/Keyword: 대뇌 활성도

Search Result 79, Processing Time 0.03 seconds

Cerebral-perfusion Reserve after Carotid-artery Stenting: Relationship with Power Spectrum of Electroencephalography (경동맥스텐트삽입술 후의 뇌관류예비능: 뇌파파워스펙트럼과의 연관성)

  • Jeong, Da-hye;Jung, Seokwon;Kwak, Byeonggeun;Kim, Young-Soo;Kim, Soo-kyoung;Kwon, Oh-Young
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.48 no.2
    • /
    • pp.144-152
    • /
    • 2016
  • Carotid-artery stenosis may reduce cerebral perfusion, and affect cerebral neuronal activities. We examined the question of whether the recovery of cerebral-perfusion reserve after carotid-artery stenting (CAS) can affect the EEG power-spectrum. Nineteen candidates for CAS were initially recruited. Subtraction imaging of single photon emissary computerized tomography (SPECT) and an electroencephalogram (EEG) were taken twice, before and 1 month after CAS. At each time point, the EEGs were recorded before and after injection of acetazolamide (pre-ACZ EEG and post-ACZ EEG). Finally, 7 patients were enrolled after exclusion of incomplete studies. We obtained the spectral ratio (SR) of each hemisphere. SR was defined as the divided value of the power-spectrum sum of fast activities by that of slow activities. The power-spectrum values between hemispheres were compared using the inter-hemispheric index of spectral ratio (IHISR), and we examined the correlation between the power-spectrum and the cerebral-perfusion reserve. Cerebral-perfusion reserve improved after CAS on the stent side in 6 of 7 patients. In 3 patients with unilateral carotid-artery stenosis, CAS increased SR on the pre-ACZ EEGs, and IHISR on the post-ACZ EEGs. The increases of SR and IHISR were concordant with the increment of cerebral-perfusion reserve. In contrast, the results in the other patients with bilateral stenosis showed complex patterns. The SR of pre-ACZ EEGs and IHISR of post-ACZ EEGs may be useful electrophysiological markers for the blood-flow reserve after CAS in patients with unilateral carotid-artery stenosis, but not in those with bilateral stenosis.

Quantitative Evaluation of Regional Cerebral Blood Flow by Visual Stimulation in $^{99m}Tc-HMPAO$ Brain SPECT ($^{99m}Tc-HMPAO$ 뇌 SPECT에서 시각자극에 의한 국소 뇌 혈류변화의 정량적 검증)

  • Juh, Ra-Hyeong;Suh, Tae-Suk;Kwark, Chul-Eun;Choe, Bo-Young;Lee, Hyoung-Koo;Chung, Yong-An;Kim, Sung-Hoon;Chung, Soo-Kyo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.3
    • /
    • pp.166-176
    • /
    • 2002
  • Purpose: The purpose of this study is to investigate the effects of visual activation and quantitative analysis of regional cerebral blood flow. Visual activation was known to increase regional cerebral blood flow in the visual cortex in occipital lobe. We evaluated that change in the distribution of $^{99m}Tc-HMPAO$ (Hexamethyl propylene amine oxime) to reflect in regional cerebral blood flow. Materials and Methods: The six volunteers were injected with 925 MBq (mean ages: 26.75 years, n=6, 3men, 3women) underwent MRI and $^{99m}Tc-HMPAO$ SPECT during a rest state with closed eyes and visual stimulated with 8 Hz LED. We delineate the legion of interest and calculated the mean count per voxel in each of the fifteen slices to quantitative analysis. The ROI to whole brain ratio and regional index was calculated pixel to pixel subtraction visual non-activation image from visual activation image and constructed brain map using a statistical parameter map (SPM99). Results: The mean regional cerebral blood flow was increased due to visual stimulation. The increase rate of the mean regional cerebral blood flow which of the activation region in primary visual cortex of occipital lobe was $32.50{\pm}5.67%$. The significant activation sites using a statistical parameter of brain constructed a rendering image and image fusion with SPECT and MRI. Conclusion: Visual activation was revealed significant increase through quantitative analysis in visual cortex. Activation region was certified in Talairach coordinate and primary visual cortex (Ba17),visual association area (Ba18,19) of Brodmann.

Effects of the Symmetric Upper Extremity Motion Trainer on the Motor Function Recovery after Brain Injury: An fMRI Study (뇌손상 후 운동신경기능 회복에 대한 대칭형 상지 운동기구의 효과: 기능적 뇌 자기공명영상 연구)

  • Tae Ki-Sik;Choi Hue-Seok;Song Sung-Jae;Kim Young-Ho
    • Progress in Medical Physics
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 2005
  • The effect of the developed symmetric upper extremity motion trainer on the cortical activation pattern was investigated in three chronic hemiparetic patients using both fMRI and Fugl-Meyer test. The training program was performed at 1 hr/day, 5 days/week during 6 weeks. Fugl-Meyer tests were performed every two weeks during the training. fMRI was performed at 3T scanner with wrist flexion-extension in two different tasks before and after the training program: the only unaffected hand movement (Task 1) and passive movements of affected hand by the active movement of unaffected hand (Task 2). fMRI studies in Task 1 showed that cortical activations decreased in ipsilateral SMC but increased in contralateral SMC. Task 2 showed cortical reorganizations in bilateral SMC, PMA and SMA. Therefore, it seems that the cortical reorganization in chronic hemiparetic patients can be induced by the training with the developed symmetric upper extremity motion trainer.

  • PDF

Working Memory Mapping Analysis using fMRI (기능적 자기공명영상을 이용한 단기기억 뇌기능 매핑연구)

  • Juh Rahyeong;Choe Boyoung;Suh Taesuk
    • Progress in Medical Physics
    • /
    • v.16 no.1
    • /
    • pp.32-38
    • /
    • 2005
  • Impaired processing of facial information is one of the broad ranges of cognitive deficits seen in patients with schizophrenia. The purpose of this study was to elucidate the differences in brain activities involved in the process of facial working memory between schizophrenic patients and healthy comparison subjects. Ten patients with schizophrenia were recruited along with matched healthy volunteers as a comparison group. Functional magnetic resonance imaging (fMRI) was used to assess cortical activities during the performance of a 1-back working memory paradigm using images of neutral faces as mnemonic content. The patient group performed the tasks with reduced accuracy. Group analysis revealed that left fusiform gyrus, right superior frontal gyrus, bilateral middle frontal gyri/insula, left middle temporal gyrus, precuneus and vermis of cerebellum and showed decreased cortical activities in the patient group. On the other hand, an increased level of activation in lateral prefrontal cortex and parietal lobule was observed from the patient group, all in the right hemisphere. A decreased level of activity in the left fusiform gyrus among the patient group implicates inefficient processing of facial information. An increased level of activation in prefrontal and parietal neural networks from the patient group confirms earlier findings on the impaired working memory of patients with schizophrenia.

  • PDF

Distribution and Characterization of the Neurosteroid Acyltransferase from the Bovine Brain (소의 뇌에서 Neurosteroid Acyltransferase의 분포 및 특성에 관한 연구)

  • Park, In-Ho;Jo, Sung-Jun;Jo, Do-Hyun
    • Applied Biological Chemistry
    • /
    • v.40 no.2
    • /
    • pp.112-116
    • /
    • 1997
  • The enzymatic properties as well as its distribution in the cerebral region and subcellular organells were investigated for the neurosteroid acyltransferase from the bovine brain, which synthesize the fatty acid esters of the neurosteroids. The cerebellum region was the highest in NSAT activity while the cerebrum was the lowest with 50% of the cerebellar activity. The NSAT was found to be mainly localized in the microsomal fraction. The optimal temperature and pH were $40^{\circ}C$ and 4.9, respectively. When $^3H-DHEA$ was utilized as substrate, the $K_m$ and $V_{max}$ was $32.6\;{\mu}M$ and 4.86 nmole/mg protein/h, respectively. Under the same condition pregnenolone$({\Delta}^5P)$ was a competitive inhibitor with $K_i=22.8\;{\mu}M$ and testosterone was a uncompetitive inhibitor with $K_i=22.8\;{\mu}M$. This may suggest that the NSAT has a different conformation in the acylation of the ${\beta}-hydroxyl$ group at C-3 and C-17.

  • PDF

Effect of Xanthine Oxidase Inhibitor on Cerebral Hypoxia-Ischemia in Neonatal Rats (Xanthine Oxidase Inhibitor가 저산소성-허혈성 뇌손상이 유도된 신생쥐에 미치는 영향)

  • Choi, Dae-Ho;Oh, Yeon-Kyun;Park, Seung-Tak
    • Clinical and Experimental Pediatrics
    • /
    • v.45 no.6
    • /
    • pp.732-742
    • /
    • 2002
  • Purpose : In order to evaluate the hypoxia-ischemia(H-I) induced neurotoxicity and the protective effect of xanthine oxidase(XO) inhibitor(allopurinol), cell number, cell viability, lactate dehydrogenase(LDH), protein synthesis(PS) and protein kinase C(PKC) activity were measured in cerebral neurons and astrocytes. Methods : Cytotoxic effect was measured by in vitro assay at 12-72 hours after H-I on cerebral neurons and astrocytes derived from 7-day old neonatal rats which were subjected to unilateral common carotid artery occlusion and exposed to hypoxic condition for 3 hours. The protective effect of XO inhibitor was examined by the cell number, cell viability, LDH and PS on 14 days after H-I with allopurinol intraperitoneal injection 15 minutes prior to H-I. In addition, the effect of allopurinol on PKC activity in hypoxic conditions was examined in neurons. Results : 72 hours from H-I, the cell numbers and viability were decreased significantly in time-dependent manner on neurons and those of astrocytes also decreased slightly, compared with control. In neonatal rats treated with H-I, the cell number, cell viability, and PS in neurons were decreased, but LDH was increased significantly compared with control. In neonatal rats pretreated with allopurinol, the cell number and viability, and PS in neurons were increased and LDH was decreased significantly compared with H-I. PKC was increased remarkably after hypoxic condition. But PKC was decreased significantly against hypoxic condition after allopurinol pretreatment. Conclusion : From these results, it is suggested that H-I is more toxic in neurons than astrocytes and allopurinol is very protective with increasing of PS, and decreasing of LDH and PKC in neurons from hypoxic-ischemic condition.

Inhibitory Effects of Human Glutamate Dehydrogenase Isozymes by Antipsychotic Drugs for Schizophrenia (정신분열증 치료제에 의한 사람 글루탐산염 탈수소효소 동종효소의 억제효과)

  • Nam, A-Reum;Kim, In-Sik;Yang, Seung-Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.152-158
    • /
    • 2016
  • Glutamate is one of the major excitatory neurotransmitters in the central nervous system of vertebrates. Human GDH (hGDH) is the enzyme that regulates the glutamate metabolism and its expression is higher in the brains of schizophrenia patients than in normal subjects. This study examined the changes in the hGDH enzymatic activity caused by antipsychotic drugs (haloperidol, risperidone, (${\pm}$)-sulpride, chlopromazine hydrochloride, melperone, (${\pm}$)butaclamol, domperidone, clozapine) related to schizophrenia. First of all, hGDH isozymes (hGDH1, hGDH2) were synthesized by genetic recombination. As a result of the enzyme assay, haloperidol, (${\pm}$)-sulpride, melperone and clozapine had an inhibitory effect on the hGDH isozymes. In addition, haloperidol showed a non-competitive inhibition against the substrate, 2-oxoglutarate. In contrast, it showed an uncompetitive inhibition against another substrate, NADH. The inhibitory effect of haloperidol on hGDH2 was abolished by the presence of L-leucine, an allosteric effector of hGDH, but by not other antipsychotic drugs. These results revealed the inhibition of enzyme activity by psychotropic drugs in hGDH isoenzymes (hGDH1 and hGDH2) and the possibility that haloperidol may be used to regulate the GDH activity and glutamate concentration in the central nervous system.

Effect of Aconiti Radix on Cultured Cerebral Neurons Damaged by Reactive Oxygen Species (활성산소로 손상된 대뇌신경세포에 대한 천오두의 영향)

  • Shim Jae Han;Lee Eun Mi;Lee Joung Hwa;Kim Dae Geun;Lee Young Chan;Kang Jeong Ho;Park Sin Kee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.2
    • /
    • pp.499-502
    • /
    • 2003
  • Neurotoxicity of reactive oxygen species(ROS) and neuroprotective effect of Aconiti Radix(AR) against ROS-induced cytotoxicity were determined on cultured mouse cerebral neurons by MTT assay after cerebral neurons were cultured for 5 hours in various concentrations of GO. GO was toxic in a dose-dependent manner on cultured cerebral neurons after cerebral neurons were incubated for 5 hours in media containing 5~40mU/ml GO. While, cultures were pretreated with 180 μg/ml AR for 2 hours increased remarkably cell viability. From these results, it is suggested that GO has toxic effect on cultured mouse cerebral neurons by the decrease of cell viability. And also, herb extract such as AKR is very effective in the protection pf neurotoxicity induced by GO.

Suppression of Reactive Oxygen Species Production by Water-extracts of Coptidis Rhizoma Enhances Neuronal Survival in a Hypoxic Model of Cultured Rat Cortical Cells. (흰쥐 대뇌세포의 저산소증 모델에서 황련의 활성산소 생성 억제와 신경세포사 억제)

  • Choi, Ju-Li;Shin, Gil-Jo;Lee, Won-Chul;Moon, Il-Soo;Jung, Seung-Hyun
    • Journal of Life Science
    • /
    • v.18 no.3
    • /
    • pp.311-317
    • /
    • 2008
  • Pathophysiological oxidative stress results in neuronal cell death mainly due to the generation reactive oxygen species (ROS). In low oxygen situation such as hypoxia and ischemia, excessive ROS is generated. Coptidis Rhizoma (CR) is a traditional medicine used for the incipient stroke. In this report we show that CR water extracts $(1\;{\mu}g/ml)$ exhibited protective effects of neuronal cell death in a hypoxic model (2% $O_2/5%\;CO_2,\;37^{\circ}C,$ 3 hr) of cultured rat cortical cells. We further show that CR water extracts significantly reduced the intensity of green fluorescence after staining with $H_2DCF-DA$ on one hour and three days after hypoxic shock and in normoxia as well. Our results indicate that CR water extracts prevent neuronal death by suppressing ROS generation.

Ultrastructure and Dehydrogenase activity on the Differentiation of the Cerebral Nerve Cell in the Chick Embryo (1) (계배 대뇌의 신경세포 분화에 따른 탈수소효소 활성 및 미세구조 (1))

  • Kim, Saeng-Gon
    • Applied Microscopy
    • /
    • v.28 no.4
    • /
    • pp.563-575
    • /
    • 1998
  • To investigate the changes during the differentiation of the cerebral neurons of chick embryo of tne embryogenic day (ED) 7 and 8, the ultrastructural changes in the cerebral neurons, the activity of dehydronases (LDH, MDH and SDH), protein expression profile and adenosine triphosphate concentration were analyzed. In ED 7 chick embryos, relatively large nucleus, centrally located nucleolus, evenly spread chromatin over nucleoplasm, and prominent nuclear envelope were observed. Oval-shaped mitochondria with well-developed cristae were present over entire cytoplasm. In ED 8 chick embryos, evenly spread chromatin over nucleoplasm, and prominent nuclear envelope were observed. In the cytoplasm, well-developed rough endoplasmic reticulum and Golgi complex were observed. In ED 7 chick embryos and ED 8 chick embryos, 31 polypeptide bands and 34 polypeptide bands were observed, respectively. The activities of dehydrogenases were lower in ED 7 chick embryos than in ED 8 chick embryos. LDH activity was 8.16 (ED 7) and 9.28 (ED 8), MDH activity was 7.98 (ED 7) and 10.10 (ED 8), and SDH activity was 5.49 (ED 7) and 7.14 (ED 8) respectively. The ATP concentration remained unchanged over ED 7 and 8.

  • PDF