• Title/Summary/Keyword: 대뇌 피질

Search Result 167, Processing Time 0.032 seconds

Correlation between Acupuncture Stimulation and Cortical Activation - Further Evidence (침자극이 대뇌피질의 활성화에 미치는 영향)

  • Cho, Zang-Hee;Kim, Kyung-Yo;Kim, Hyeong-Kyun;Lee, Byung-Ryul;Wong, E.K.;Kang, Chang-Ki;Na, Chang-Su
    • Journal of Acupuncture Research
    • /
    • v.18 no.3
    • /
    • pp.105-113
    • /
    • 2001
  • 목적 : 이 실험의 목적은 경혈에 대한 침자극이 대뇌피질에 어떠한 영향을 미치는가에 대하여 체계적이고 객관적으로 증명하는 것이다. 방법 : 시각과 관련이 있는 광명(GB37), 청각과 관련이 있는 협계(GB43) 및 외관(SJ5)을 자극하고 fMRI를 통하여 대뇌피질의 활성정도를 관찰하였다. 결과 : 이들 경혈의 자극으로 시각과 청각과 관련된 피질의 활성이 나타났다. 자극에 의한 대뇌피질 활성을 fMRI를 통하여 고찰한 결과 특정한 경혈의 자극이 대뇌피질을 활성화시킨다는 사실을 알 수 있었다. 결론 : 치료 효과는 그 경혈의 자극에 의한 대뇌피질의 활성과 관련이 있음을 말하는 것으로, 경혈지극과 대뇌와의 상관성을 증명하는 것이다.

  • PDF

Analysis on the Variability of Cerebral Cortex per Intellectual Category in Adolescents (청소년의 지능범주별 대뇌피질 변화성 분석 연구)

  • Kim, Ye Rim
    • Journal of Gifted/Talented Education
    • /
    • v.23 no.3
    • /
    • pp.421-434
    • /
    • 2013
  • The brains of adolescents experience rapid changes, which has been studied to prove relatedness between neuroanatomical properties and IQ. But, most previous studies infer the relatedness from purely cross-sectional data. This study not only measured the thickness of the cerebral cortex once, but traced its variability and the relatedness between IQ and this variability, which was presumed to be 75. Healthy adolescents (M=16yr. and 4month) were divided into 5-stage categories based on their intellectual ability and MRI scan was made twice every 6 months to measure the variablity of their cerebral cortex. As a result, a big difference in the variability of the cerebral cortex was shown based on their IQ. Three groups with an IQ of more than 120 showed a decrease in the thickness of the cerebral cortex in 11 brain regions, while two groups with an IQ lower than 120 showed an increase in the cerebral cortex thickness in 5 to 8 regions. It is presumed that the lower the IQ, the slower the maturation of the cerebral cortex.

Effect of NMDA Receptor Antagonist on Local Cerebral Glucose Metabolic Rate in Focal Cerebral Ischemia (국소뇌허혈에서 NMDA 수용체 길항제가 국소 뇌포도당 대사율에 미치는 영향)

  • Kim, Sang-Eun;Hong, Seung-Bong;Yoon, Byung-Woo;Bae, Sang-Kyun;Choi, Chang-Woon;Lee, Dong-Soo;Chung, June-Key;Roh, Jae-Kyu;Lee, Myung-Chul;Koh, Chang-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.29 no.3
    • /
    • pp.294-306
    • /
    • 1995
  • There has recently been increasing interest in the use of NMDA receptor antagonists as potential neuroprotective agents for the treatment of ischemic stroke. To evaluate the neuroprotective effect of the selective non-competitive NMDA receptor antagonist MK-801 in focal cerebral ischemia, local cerebral glucose utilization (ICGU) was examined in 15 neuroanatomically discrete regions of the conscious rat brain using the 2-deoxy-D[$^{14}C$] glucose quantitative autoradiographic technique 24 hr after left middle cerebral artery occlusion (MCAO). Animals received MK-801 (5 mg/kg i.v.) or saline vehicle before (20-30 min) or after (30 min) MCAO. Both pretreatment and posttreatment of MK-801 increased occluded/non-occluded ICGU ratio in 7 and 5 of the 15 regions measured, respectively (most notably in cortical structures). Following MK-801 pretreatment, there was evidence of widespread increases in ICGU not only in the non-occluded hemisphere (12 of the 15 areas studied) but also in the occluded hemisphere (13 of the 15 areas studied), while MK-801 postreatment did not significantly increase ICGU both in the normal and occluded hemispheres. These data indicate that MK-801 has a neuroprotective effect in focal cerebral ischemia and demonstrate that MK-801 provides widespread alterations of glucose utilization in conscious animals.

  • PDF

Simultaneous measurements of NIR and electrical signals on rat brain during whisker stimulation (수염 자극 시 대뇌수염피질에서의 혈류변화에 따른 근적외선 신호와 전기신호의 동시측정)

  • Lee, Seung-Deok;Gwon, Gi-Un;Go, Dal-Gwon;Ho, Dong-Su;Kim, Beop-Min;Lee, Hyeon-Ju;Rang, I-Ran;Sin, Hyeong-Cheol
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2008.02a
    • /
    • pp.455-456
    • /
    • 2008
  • 근적외선 분광법(Near-infrared spectroscopy, NIRS)은 대뇌피질에서의 혈류변화(oxy-, deoxyhemoglobin의 농도변화)를 비침습적으로 측정할 수 있는 방법이다. 본 논문에서는 향후 뇌-컴퓨터 접속기술(Brain computer interface)에 적용하기위한 초기 연구단계로, 쥐의 수염을 자극시 활성화되는 대뇌수염피질 영역에서의 혈류변화 및 전기신호를 동시에 측정하고 두 신호의 패턴을 분석한다.

  • PDF

Information Process Model of Cerebral Cortex Using Neural Network and Fuzzy Cognitive Map (신경회로망과 퍼지 인지 맵(FCM)을 이용한 대뇌피질의 정보처리 모델)

  • 서재용;김성주;연정흠;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.73-76
    • /
    • 2003
  • 신경생리학적으로 밝혀진 바에 의하면, 대뇌의 시상에 분포한 일차 감각영역에서 감각 정보를 수집한다. 수집된 감각 정보는 과거 기억과의 비교를 통해 인식되고 인식된 정보는 일차 운동영역으로 전달되어 행동으로 나타난다. 수집된 감각 정보를 판단하는 기관은 감각 연합 영역으로 알려져 있으며, 과거 정보를 통해 비교하여 판단하는 방식이다. 하지만, 과거 기억 정보로 존재하지 않는 새로운 감각 입력에 대해서는 대뇌피질 내의 파페츠 회로를 통해 새로이 기억하게 된다. 이 과정에는 변연계의 편도체(Amygdala)의 감정 반응을 이용하여 강한 감정 반응을 유도하는 감각 입력에 대해서는 강한 기억을 하게 되고, 반대의 경우에는 약한 기억을 하게 되는 특징이 고려된다. 본 논문에서는 기억되지 않은 새로운 감각 자극에 대해 감정 반응 정도에 따라 기억되는 정도의 변화를 관찰할 수 있는 모델을 제시하고자 한다. 이 모델은 대뇌피질의 정보 처리 및 감각 학습 과정을 인공적으로 구현하는 과정에 바탕이 될 것이다.

  • PDF

The Effects of EGEE on the Morphometry in the Thickness and Histogenesis of Rat Cerebral Cortex During Developmental Phase (발생기 흰쥐 대뇌 피질의 형태 구조에 미치는 Ethylene Glycol Monoethyl Ether의 영향)

  • Lee Eung-Hee;Jeong Gil-Nam;Jo Gi-Jin;Jo Un-Bock
    • Journal of Life Science
    • /
    • v.14 no.6 s.67
    • /
    • pp.975-985
    • /
    • 2004
  • This study attempts to investigate the developmental alterations of rat cerebral cortex, and the effects of EGEE on the developmental cerebral cortex in the prenatal, postnatal and adults were examined by morphological methods and H-E staining was used for the histological changes. In the case of injection of EGEE, at 14 day of fetal phase, parietal cortex was thickest $(95{\pm}12.7\;{\mu}m)$ but, it was thinner than in the control group $(102{\pm}14.0\;{\mu}m)$ and, occipital cortex $(57{\pm}10.5\;{\mu}m)$ compared with other cortexes was the thinnest in fetal phase. In the suckling phase, each cortex grew thick quickly but, after weanning phase, the growth of the cortex slowed and the thickness of cortex was similar to that of cortex in the adult phase. At 105 day after birth, the parietal cortex was thickest $(934{\pm}21.6\;{\mu}m)$ but, decreased compared with control group $(1113{\pm}19.0\;{\mu}m)$. When EGEE was injected in intraperitoneal of rat, the number of neuroblasts per unit area was largest $(207.7{\pm}11.4/10^{-2}\;mm$ at the mantle layer of parietal cortex at 14 day of fetal phase but, decreased compared with control group $(224.2{\pm}13.8/10^{-2}\;mm$ , and the size was largest $(7.5{\pm}1.3\;{\mu}m)$ at the ependymal cell layer of occipital cortex at 3 day after birth but, decreased compared with control group $(9.0{\pm}1.2\;{\mu}m)$. Simillar to control group, the number of granular cells and pyramidal cells were largest at the II and III layer of parietal cortex, but decreased during developmental phase. The size was largest at the IV and V layer of occipital cortex but it was decreased compared with control group. When EGEE was injected in intraperitoneal of rat, the cerebral cortex from fetal phase to 3 day after birth has differentiated into the 3 layers; ependymal, mantle and marginal layer, but empty cisternaes or vacoules in the cerebral cortexes and the condensed phases of neuroblasts were appeared. From 5 day after birth, it has differentiated into the 4 layers; molecular, external granular, mixed layer of internal granular, external and internal pyramidal cells and multiformal layer but, empty cisternaes or vacoules in the granular and pyramidal cell layers were appeared and the number per unit area of neuron was decreased. In the cerebral cortex of the weaning and adult phases, division of cell layers was not clear and empty cisternae was formed in the cortex with the cells in external granular and pyramidal cell layers, was magnified or condensed around blood vessels of neurons.

A Study on The Measurement of Cerebral Cortical Thickness in Patients with Mood Disorders (기분장애 환자의 대뇌 피질 두께 측정에 관한 연구)

  • Do-Hun Kim;Hyo-Young Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.2
    • /
    • pp.73-81
    • /
    • 2024
  • This study compared the cortical thickness of patients with mood disorders and a control group to assess structural abnormalities. A retrospective study was conducted from September 2020 to August 2022 at the Department of Psychiatry, P Hospital in Yangsan, Gyeongsangnam-do. The study included 44 individuals diagnosed with mood disorders and 59 healthy individuals without any pathological lesions. The 3D-T1 MPRAGE images obtained from magnetic resonance imaging examinations were utilized, and FreeSurfer software was employed to measure cortical thickness. Statistical analysis involved independent samples t-tests to measure the differences in means between the two groups, and Cohen's d test was used to compare the effect sizes of the differences. Furthermore, the correlation between the measured average cortical thickness and Positive and Negative Syndrome Scale scores was analyzed. The research results revealed that patients with mood disorders exhibited decreased cortical thickness compared to the normal control group in both superior frontal regions, both rostral middle frontal regions, both caudal middle frontal regions, both pars opercularis, pars orbitals, pars triangularis regions, both superior temporal regions, both inferior temporal regions, both lateral orbitofrontal regions, both medial orbitofrontal regions, both fusiform regions, both posterior cingulate regions, both isthmus cingulate regions, both superior parietal regions, both inferior parietal regions, both supramarginal regions, left postcentral region, right bank of the superior temporal sulcus region, right middle temporal region, right rostral anterior cingulate region, and right insula region. Among them, regions that showed differences with effect sizes of 0.8 or higher were left fusiform (d=0.82), pars opercularis (d=0.94), superior frontal (d=0.88), right lateral orbitofrontal (d=0.85), and pars orbitalis (d=0.89). Additionally, there was a weak negative correlation between PANSS scores and average cortical thickness in both the left hemisphere (r=-0.234) and right hemisphere (r=-0.230). These findings are expected to be helpful in identifying areas of cortical thickness reduction in patients with mood disorders compared to healthy individuals and understanding the relationship between symptom severity and cortical thickness changes.

Somatosensory Afferent Pathway Tracing from Rat Anterior Cruciate Ligament Nerve Endings to Cerebral Cortex Using Pseudorabies Virus (쥐 전방십자인대 신경말단에서 대뇌피질까지 Pseudorabies virus(PRV)를 이용한 구심성 체성감각신경로의 추적)

  • Kim, Jin-Su;Jeong, Soon-Taek;Cho, Se-Hyun;Park, Hyung-Bin
    • Journal of Korean Orthopaedic Sports Medicine
    • /
    • v.4 no.1
    • /
    • pp.29-35
    • /
    • 2005
  • Purpose: The anterior cruciate ligament(ACL) has a neuromuscular control function as evidenced by the presence within it of mechanoreceptor. Although these mechanoreceptors have been identified, the afferent somatosensory pathways from ACL to the cerebrum have yet to be demonstrated in their entirety. In order to trace these afferent pathway, we conducted a viral trans-synaptic tracing experiment using the neurotropic pseudorabies virus(PRV). Material and Methods: The PRV was injected into the ACL of rats and allowed to replicate and spread trans-synaptically for 6 to 7 days. The brain and spinal cord of each sacrificed rat was then removed and processed immunohistochemically to detect the presence of PRV. Results: PRV-immunoreactive neurons were found to be localized in several different regions from the spinal cord to the cerebrum. Four nuclei in the reticular formation of the brain stem demonstrated strong positive labeling: the mesencephalic reticular nucleus, magnocelluar reticular nucleus, paragigantocellular reticular nucleus, and gigantocellular reticular nucleus. Conclusions: This findings suggests that the nerve endings of the rat ACL project into the cerebrum and that the reticular formation may play an important role in the afferent pathway of those nerve endings.

  • PDF

Activation Differences of Superior Parietal Lobule and Cerebellum Areas While Inferring Geometrical Figures per Intellectual Category in Adolescents (도형 과제 수행 때 나타나는 청소년의 지능별 대뇌 및 소뇌의 활성도 차이 분석)

  • Kim, Ye Rim
    • Journal of Gifted/Talented Education
    • /
    • v.23 no.5
    • /
    • pp.637-648
    • /
    • 2013
  • The relationship between the cerebral cortex and human intelligence has been studied using various methods, and related brain areas involved in intellectual manifestation have been discovered individually. Such studies have also shown the cerebellum is closely involved in various cognitive functions such as language, memory, and information processing. However, studies showing an activity difference between the cerebral cortex and cerebellum when performing specific tasks are hard to find. This study searched and analyzed the active regions of the cerebral cortex and cerebellum seen while performing the inference of geometrical figures. A WAIS intelligence test was conducted using 81 healthy boys (16.3 years of age on average), and five categories were classified. While performing the inference of shapes, their brain images were taken using functional magnetic resonance imaging (fMRI). As a result, the activity in 12 brain regions was observed, including in the cerebral cortex, the bilateral inferior parietal, the visual cortex, bilateral superior parietal, frontal-Inf-Tri-R, and bilateral caudate, while activities in 5 discrete areas were seen in the cerebellum. In particular, the higher the intelligence (IQ) of the subject, the stronger their activity. Among those with the most superior intelligence, subjects with an IQ of 140-147 showed significantly higher activity compared to the other groups. Such results seem to represent a very high utilization of intelligence in a highly gifted group, and we can expect to use this to determine the super gifted.