Browse > Article
http://dx.doi.org/10.9722/JGTE.2013.23.3.421

Analysis on the Variability of Cerebral Cortex per Intellectual Category in Adolescents  

Kim, Ye Rim (Seojeong University)
Publication Information
Journal of Gifted/Talented Education / v.23, no.3, 2013 , pp. 421-434 More about this Journal
Abstract
The brains of adolescents experience rapid changes, which has been studied to prove relatedness between neuroanatomical properties and IQ. But, most previous studies infer the relatedness from purely cross-sectional data. This study not only measured the thickness of the cerebral cortex once, but traced its variability and the relatedness between IQ and this variability, which was presumed to be 75. Healthy adolescents (M=16yr. and 4month) were divided into 5-stage categories based on their intellectual ability and MRI scan was made twice every 6 months to measure the variablity of their cerebral cortex. As a result, a big difference in the variability of the cerebral cortex was shown based on their IQ. Three groups with an IQ of more than 120 showed a decrease in the thickness of the cerebral cortex in 11 brain regions, while two groups with an IQ lower than 120 showed an increase in the cerebral cortex thickness in 5 to 8 regions. It is presumed that the lower the IQ, the slower the maturation of the cerebral cortex.
Keywords
Adolescent; Cortex thickness; Cerebral; Brain region; MRI;
Citations & Related Records
연도 인용수 순위
  • Reference
1 유승식 (2001). 실전응용을 중심으로 한 기능 자기공명영상 실험. 서울: 의학문화사.
2 이정모, 강은주 (2000). 두뇌 기능 지도화와 정보 처리 과정 이해. 전자공학학회지, 27(7), 49-61.
3 Andreasen, N. C., Flaum, M., Swayze, V., O'Leary, D. S., Alliger, R., Cohen, G., Ehrhardt, J., Yuh, W. T., (1993). Intelligence and brain structure in normal individuals. American Journal of Psychiatry, 150(1), 130-134.   DOI   ScienceOn
4 Banich, M. T. (2009). 인지 신경과학과 신경심리학 [김명선, 강은주, 강연욱, 김현택, 역]. 서울: 시그마프레스. (원본출간년도: 2004)
5 Bear, M. F., Paradiso, M. A., Connors, B. W. (2007). Neuroscience-Exploring the Brain (3rd Ed.). NY: Lippincott Williams & Wilkins.
6 Cabeza, R., & Nyberg, L. (2000). Imaging cognition II: An empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience, 12(1), 1-47.
7 Choi, Y. Y., Shamosh, N. A., Cho, S. H., DeYoung, C. G., Lee, M. J., Kim, S. I., Cho, Z. H., Kim, K., Gray, J. R., & Lee, K. H. (2008). Multiple Bases of Human Intelligence Revealed by Cortical Thickness and Neural Activation. The Journal of Neuroscience, 28(41), 10323-10329.   DOI   ScienceOn
8 Cohen, J. D., Perlstein, W. M., Braver, T. S., Nystrom, L. E., Noll, D. C., Jonides, J., & Smith, E. E. (1997). Temporal dynamics of brain activation during a working memory task. Nature, 386(6625), 604-608.   DOI   ScienceOn
9 Draganski, B., Gaser, C., Busch, V., Schuierer, G., Bogdahn, U., & May, A. (2004). Changes in grey matter induced by training. Nature, 427(6972), 311-312.   DOI   ScienceOn
10 Driemeyer, J., Boyke, J., Gaser, C., Büchel, C., & May, A. (2008). Changes in Gray Matter Induced by Learning-Revisited. PLoS ONE, 3(7), e2669.   DOI   ScienceOn
11 Engvig, A., Fjell, A. M., Westlye, L. T., Moberget, T., Sundseth, O., Larsen, V. A., & Walhovd, K. B., (2010). Effects of memory training on cortical thickness in the elderly. NeuroImage, 52(4), 1667-1676.   DOI   ScienceOn
12 Gray, J. R., & Thompson, P. M. (2004). Neurobiology of intelligence: Science and ethics. Nature Reviews Neuroscience, 5(6), 471-482.   DOI   ScienceOn
13 Haier, R. J., Siegel, B. V., Nuechterlein, K. H., Hazlett, E., Wu, J., Paek, J., Browning, H., & Buchsbaum, M. S. (1998). Cortical glucose metabolic rate correlates of abstract reasoning and attention studied with positron emission tomography. Intelligence, 12(2), 199-217.
14 Haier, R. J., Jung, R. E., Yeo, R. A., Head, K., & Alkier, M. T. (2004). Structural brain variation and general intelligence. Neuroimage, 23(1), 425-433.   DOI   ScienceOn
15 Huettel, S. A., Song, A. W., & McCarthy, G. (2004). Funtional magnetic resonance imaging. Sunderland, MA: Sinauer Associates.
16 Huettel, S. A., Song, A. W., & McCarthy, G. (2008). Functional magnetic resonance imaging. Sunderland, MA: Sinauer Associates.
17 Kroger, J. K., Sabb, F. W., Fales, C. L., Bookheimer, S. Y., Cohen, M. S., & Holyoak, K. J. (2002). Recruitment of anterior dorsolateral prefrontal cortex in human reasoning: Aparametric study of relational complexity. Cerebral Cortex, 12(5), 477-485.   DOI   ScienceOn
18 Mcdaniel, M. A. (2005). Big-Brained people are smater: A Meta-Analysis of the Relationship between In Vivo Brain Volume and Intelligence. Intelligence, 33(4), 337-346.   DOI   ScienceOn
19 Mcdaniel, M. A., & Nguyen, N. T. (2002). A meta-analysis of the relationship between MRI-assessed brain volume and intelligence. Paper presented at the Third Annual Conference of the International Society of Intelligence Research. Nashville.
20 Peters, M. (1995). Does brain size matter? A reply to Rushton and Ankney. Canadian Journal of Experimental Psychology, 49(4), 570-576.   DOI
21 Smith, E. E., & Jonides, J. (1998). Neuroimaging analyses of working memory. Proc. Natl. Acad. Sci. USA, 95, 12061-12068.   DOI
22 Sowell, E. R., Thompson, P. M., Leonard, C. M., Welcome, S. E., Kan, E., & Toga, A. W. (2004). Longitudinal mapping of cortical thickness and brain growth in normal children. The Journal of Neuroscience, 24(38), 8223-8231.   DOI   ScienceOn
23 Prabhakaran, V., Smith, J. A. L., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. E. (1997). Neural substrates of fluid reasoning: An fMRI study of neocortical activation during performance of the Raven's Progressive Matrices Test. Cognitive Psychology, 33(1), 43-63.   DOI   ScienceOn
24 Shaw, P., Greenstein, D., Lerch, J., Clasen, L., Lenroot, R., Gogtay, N., Evans, A., Papoport, J., & Giedd, J. (2006). Intellectual ability and cortical development in children and adolescents. Naure, 440(7084), 676-679.
25 Shaw, P., Kabani, N. J., Lerch, J. P., Eckstrand, K., Lenroot, R., Gogtay, N., Greenstein, D., Clasen, L., Rapoport, J. L., Giedd, J. N., & Wise, S. P. (2008). Neurodevelopmental trajectories of the human cerebral cortex. The Journal of Neuroscience, 28(14), 3586-3594.   DOI   ScienceOn