• Title/Summary/Keyword: 대기 자료 시스템

Search Result 372, Processing Time 0.026 seconds

A Model for Analyzing Time-Varying Passengers' Crowdedness Degree of Subway Platforms Using Smart Card Data (스마트카드자료를 활용한 지하철 승강장 동적 혼잡도 분석모형)

  • Shin, Seongil;Lee, Sangjun;Lee, Changhun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.5
    • /
    • pp.49-63
    • /
    • 2019
  • Crowdedness management at subway platforms is essential to improve services, including the prevention of train delays and ensuring passenger safety. Establishing effective crowdedness mitigation measures for platforms requires accurate estimation of the congestion level. There are temporal and spatial constraints since crowdedness on subway platforms is assessed at certain locations every 1-2 years by hand counting. However, smart cards generate real-time big data 24 hours a day and could be used in estimating congestion. This study proposes a model based on data from transit cards to estimate crowdedness dynamically. Crowdedness was defined as demand, which can be translated into passengers dynamically moving along a subway network. The trajectory of an individual passenger can be identified through this model. Passenger flow that concentrates or disperses at a platform is also calculated every minute. Lastly, the platform congestion level is estimated based on effective waiting areas for each platform structure.

An Analysis of Ship's Waiting Ratio in the Korean Seaports (국내 항만의 선박 대기율 실증 분석 연구)

  • Kim, Eun-Soo;Kim, Geun-Sub
    • Journal of Navigation and Port Research
    • /
    • v.40 no.1
    • /
    • pp.35-41
    • /
    • 2016
  • Port congestion has been recognized as one of the critical factors for port service competitiveness and port selection criteria. However, congestion ratio, the congestion index currently used by Korea, plays a very limited role in shipping companies' and shippers' selection of port and port authorities' decision making regarding port management and development. This is mainly due to the fact that this ratio is only calculated as the ratio of the number of vessels by each port. Therefore, this study aims to measure service level related to vessel entry and departure in Korea ports by evaluating waiting ratio(WR) according to terminals and vessel types. The results demonstrate that the waiting ratio of containerships and non-containerships is less than 4% and 15% respectively, which satisfies the reasonable level suggested by the UNCTAD and OECD. Port of Pohang is revealed to have the highest WR of 57% and among the terminals, No. 1 Terminal of the Shinhang area has the highest WR. In terms of ship types, WR of Steel Product Carrier is highest, followed by General Cargo Ship and Bulk Carrier at the Pohang Shinhang area. In addition to WR, berth occupancy ratio as well as the number and time of waiting vessels can be utilized to evaluate service level by ports and terminals from port users' perspective, and furthermore, to improve the port management and development policy for port managers or authorities.

Analysis of long-term climate variability by extending hydrologic time series (수문 시계열 확장을 통한 장기 기후 변동성 분석)

  • Kim, Taereem;Kim, Hanbeen;Jung, Younghun;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.308-308
    • /
    • 2019
  • 지구상 해양, 대기 및 대륙 상호간의 연속적인 물의 거동을 나타내는 물의 순환의 주요 과정 중 하나인 유량 자료는 경년부터 수십년간의 다양한 기상학적 변동성을 내포하며 해당 지역의 수문기상학적 특성을 반영한다. 이러한 기상학적 변동성 중에서 비교적 긴 시간 주기를 나타내는 저주파 진동은 전지구적 기후변화의 장기적 영향을 나타내며 해수면 상승, 홍수 또는 가뭄과 같은 극한 수문사상을 나타내는 매우 주요한 지표로 활용되고 있지만 관측된 수문 시계열의 짧은 자료길이로 인하여 통계적 분석의 신뢰성에 한계를 보여왔다. 따라서 과거 수문 시계열의 확장으로 인하여 부재의 영역으로 남아있던 자료 기간의 한계가 보완되면 보다 정확하고 신뢰도 있는 분석이 가능할 것이다. 나무나이테를 활용한 고기후 복원 등의 연구가 증가하고 있지만 공학 분야에서 이를 실제로 활용한 연구는 아직 미비하다. 따라서 본 연구에서는 과거 기후의 정보를 바탕으로 복원된 수문 시계열을 활용하여 수문 시계열에 내재된 장기 기후 변동성을 통계적으로 분석하기 위한 문헌들을 조사하고, 장기적인 시간 흐름에 내재된 잠재적인 경향 및 변동성을 통계적 분석을 파악하고자 한다. 이를 위해 주어진 수문 시계열에 내재된 저주파 신호을 추출하기 위한 경험적 모드분해법을 활용하여 수문 자료에 내재된 장기 변동성을 추출하였으며, 산업화 이전부터 연장된 수문 시계열의 공학적 활용성을 분석하고자 한다.

  • PDF

Comparison of Wind Vectors Derived from GK2A with Aeolus/ALADIN (위성기반 GK2A의 대기운동벡터와 Aeolus/ALADIN 바람 비교)

  • Shin, Hyemin;Ahn, Myoung-Hwan;KIM, Jisoo;Lee, Sihye;Lee, Byung-Il
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1631-1645
    • /
    • 2021
  • This research aims to provide the characteristics of the world's first active lidar sensor Atmospheric Laser Doppler Instrument (ALADIN) wind data and Geostationary Korea Multi Purpose Satellite 2A (GK2A) Atmospheric Motion Vector (AMV) data by comparing two wind data. As a result of comparing the data from September 2019 to August 1, 2020, The total number of collocated data for the AMV (using IR channel) and Mie channel ALADIN data is 177,681 which gives the Root Mean Square Error (RMSE) of 3.73 m/s and the correlation coefficient is 0.98. For a more detailed analysis, Comparison result considering altitude and latitude, the Normalized Root Mean Squared Error (NRMSE) is 0.2-0.3 at most latitude bands. However, the upper and middle layers in the lower latitudes and the lower layer in the southern hemispheric are larger than 0.4 at specific latitudes. These results are the same for the water vapor channel and the visible channel regardless of the season, and the channel-specific and seasonal characteristics do not appear prominently. Furthermore, as a result of analyzing the distribution of clouds in the latitude band with a large difference between the two wind data, Cirrus or cumulus clouds, which can lower the accuracy of height assignment of AMV, are distributed more than at other latitude bands. Accordingly, it is suggested that ALADIN wind data in the southern hemisphere and low latitude band, where the error of the AMV is large, can have a positive effect on the numerical forecast model.

Investigation of correlation between ambient particulate matter and rainwater quality during heavy rain (호우 시 대기 중 미세먼지와 빗물 수질 간 상관성 분석 연구)

  • Hyemin Park;Taeyong Kim;Minjune Yang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.151-151
    • /
    • 2023
  • 본 연구는 호우(heavy rain) 발생 시 대기 중 미세먼지(particulate matter, PM) 저감효과를 규명하고 강우 지속에 따른 빗물 수질(pH, 전기전도도(electrical conductivity, EC), 수용성 이온) 분석을 통해 대기 중 PM이 빗물 수질에 미치는 영향을 평가하였다. 2020년 3월부터 2021년 2월까지강우 강도(7.5 mm/h)를 기준으로 총 6회의 강우를 대상으로 하였으며 빗물 샘플은 집수장치를 통해 50 mL를 연속적으로 수집하여 수질을 분석하였다. 대기 중 PM2.5 (≤ 2.5 ㎛ in diameter) 및 PM10 (≤ 10 ㎛ in diameter) 농도는 기상청 내 부산 남구 대연동 관측소의 automatic weather system (AWS)에서 측정된 일평균 자료를 이용하였다. 강우에 따른 대기 중 PM의 저감효율은 상대적으로 PM10에서 뚜렷하게 나타났으며, 특히 강우 강도 7.5 mm/h 이상(유형 1)의 호우 발생 시60% 이상의 저감효율을 보였다. 반면, 강우 강도 7.5 mm/h 이하(유형 2)일 때는 10% 이하의 저감효율을 보였으며, 강우 지속에 따라 대기 중 PM10 농도가 증가하는 경향을 보이기도 하였다. 총108개의 빗물 샘플 수질을 분석한 결과, 유형 1의 경우 초기 빗물의 평균 EC는 58.5 µS/cm으로 상대적으로 높았으며 대기 중 PM10과 양의 상관관계(r = 0.99)를 보였고 평균 pH는 4.3으로 산성도가 높게 나타났으며 대기 중 PM10과 음의 상관관계(r = -0.99)를 보였다. 반면, 유형 2의 경우 대기 중 PM10과 EC (r = -0.56) 및 pH (r = -0.41) 간 뚜렷한 상관관계가 나타나지 않았다. 또한 강우가 지속됨에 따라 EC와 수용성 양이온(Na+, Mg2+, K+, Ca2+, NH4+) 및 음이온(Cl-, NO3-, SO42-)의 농도는 지속적으로 감소하는 경향을 보였으나 pH의 경우 강우 강도에 따라 증감의 경향이 다르게 나타났다. 유형 1의 경우 강우 지속에 따라 pH가 증가하여 산성도가 낮아졌으나 유형 2는 pH의 증감 형태를 뚜렷하게 확인하기 어려웠다. 연구 결과를 통해 강우 초기 높은 강도로 강우가 지속될 경우 대기 중 PM10이 빗물 수질에 영향을 미칠 수 있는 것으로 판단되며, 이에 따라 호우 발생 시 강우가 대기 중 오염물질을 지표면으로 유입시킬 수 있는 매개체로 작용할 수 있음을 지시한다.

  • PDF

GEMS BrO Retrieval Sensitivity Test Using a Radiative Transfer Model (복사전달모델을 이용한 GEMS 일산화브로민 산출 민감도 시험)

  • Chong, Heesung;Kim, Jhoon;Jeong, Ukkyo;Park, Sang Seo;Hong, Jaemin;Ahn, Dha Hyun;Cha, Hyeji;Lee, Won-Jin;Lee, Hae-jung
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1491-1506
    • /
    • 2021
  • To estimate errors in GEMS retrievals for bromine monoxide (BrO) total vertical column densities(VCDs), we perform a sensitivity test using synthetic spectra generated by a radiative transfer model. Hourly synthetic data are produced for 00-07 UTC on the first day of every month in Jul 2013- Jun 2014. Solution errors estimated by the optimal estimation method tend to decrease with increasing air mass factors (AMFs) but increase when AMFs are larger than 5. Interference errors induced by formaldehyde (HCHO) absorption appear to be larger with smaller BrO AMFs. Total BrO retrieval errors estimated by combining solution and interference errors show an average of 26.74±30.18% for all data samples and 60.39±133.78% for those with solar zenith angles higher than 80°. Due to interfering spectral features and measurement errors not considered in thisstudy, errorsin BrO retrievals from actual GEMS measurements may have different magnitudes from our estimates. However, the variability of errors assessed in this study is still expected to appear in the actual BrO retrievals.

Long-term Precipitation Series Prediction Using Global Climate Indices in South Korea (장기 강우 예측을 위한 전지구적 기상인자 선정 및 시계열 모형 구축)

  • Kim, Taereem;Seo, Jungho;Joo, Kyungwon;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.16-16
    • /
    • 2017
  • 기후 시스템의 다양한 상호작용으로 인해 나타나는 대표적 현상인 강우는 수문학적 분석 과정의 필수적인 요소이며 장기 강우를 예측하는 것은 효율적인 수자원 관리에 중요한 기반이 되고 있다. 이러한 강우는 장기적으로 지구의 대기-해양 순환 패턴의 영향을 받으며, 특히 엘니뇨와 라니냐와 같은 기상 이변이 발생할 경우 대규모 순환에 변화가 일어나게 되어 강우에 영향을 미칠 수 있다. 따라서 본 연구에서는 지구의 순환 패턴 특성을 수치화한 전지구적 기상인자 중에서 우리나라 장기 강우를 예측하기 위한 기상인자를 선정하고 시계열 모형 구축을 통하여 예측력을 평가하였다. 이를 위해 강우에 내재된 다양한 대기-해양 순환 패턴으로부터 나타나는 주기적 요소를 추출하기 위해 앙상블 경험적 모드분해법을 사용하여 강우를 분해한 후, 각 분해된 강우자료와 전지구적 기상인자와의 상관성 분석을 통해 높은 상관성을 가진 기상인자를 선별하고 단계식 변수선택법으로부터 유의미한 기상인자를 최종적으로 선정하였다. 그 결과, 우리나라 기상청 60개 지점의 월별 강우자료 중 전반적으로 영향을 미치는 기상인자를 선정할 수 있었으며, 선정된 기상인 자로 구축된 시계열 모형을 통해 우리나라 장기 강우를 예측하였다.

  • PDF

Geographical Characteristics of PM2.5, PM10 and O3 Concentrations Measured at the Air Quality Monitoring Systems in the Seoul Metropolitan Area (수도권 지역 도시대기측정소 PM2.5, PM10, O3 농도의 지리적 분포 특성)

  • Kang, Jung-Eun;Mun, Da-Som;Kim, Jae-Jin;Choi, Jin-Young;Lee, Jae-Bum;Lee, Dae-Gyun
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.657-664
    • /
    • 2021
  • In this study, we investigated the relationships between the air quality (PM2.5, PM10, O3) concentrations and local geographical characteristics (terrain heights, building area ratios, population density in 9 km × 9 km gridded subareas) in the Seoul metropolitan area. To analyze the terrain heights and building area ratios, we used the geographic information system data provided by the NGII (National Geographic Information Institute). Also, we used the administrative districts and population provided by KOSIS (Korean Statistical Information Service) to estimate population densities. We analyzed the PM2.5, PM10, and O3 concentrations measured at the 146 AQMSs (air quality monitoring system) within the Seoul metropolitan area. The analysis period is from January 2010 to December 2020, and the monthly concentrations were calculated by averaging the hourly concentrations. The terrain is high in the northern and eastern parts of Gyeonggi-do and low near the west coastline. The distributions of building area ratios and population densities were similar to each other. During the analysis period, the monthly PM2.5 and PM10 concentrations at 146 AQMSs were high from January to March. The O3 concentrations were high from April to June. The population densities were negatively correlated with PM2.5, PM10, and O3 concentrations (weakly with PM2.5 and PM10 but strongly with O3). On the other hand, the AQMS heights showed no significant correlation with the pollutant concentrations, implying that further studies on the relationship between terrain heights and pollutant concentrations should be accompanied.

Application and Analysis of Ocean Remote-Sensing Reflectance Quality Assurance Algorithm for GOCI-II (천리안해양위성 2호(GOCI-II) 원격반사도 품질 검증 시스템 적용 및 결과)

  • Sujung Bae;Eunkyung Lee;Jianwei Wei;Kyeong-sang Lee;Minsang Kim;Jong-kuk Choi;Jae Hyun Ahn
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1565-1576
    • /
    • 2023
  • An atmospheric correction algorithm based on the radiative transfer model is required to obtain remote-sensing reflectance (Rrs) from the Geostationary Ocean Color Imager-II (GOCI-II) observed at the top-of-atmosphere. This Rrs derived from the atmospheric correction is utilized to estimate various marine environmental parameters such as chlorophyll-a concentration, total suspended materials concentration, and absorption of dissolved organic matter. Therefore, an atmospheric correction is a fundamental algorithm as it significantly impacts the reliability of all other color products. However, in clear waters, for example, atmospheric path radiance exceeds more than ten times higher than the water-leaving radiance in the blue wavelengths. This implies atmospheric correction is a highly error-sensitive process with a 1% error in estimating atmospheric radiance in the atmospheric correction process can cause more than 10% errors. Therefore, the quality assessment of Rrs after the atmospheric correction is essential for ensuring reliable ocean environment analysis using ocean color satellite data. In this study, a Quality Assurance (QA) algorithm based on in-situ Rrs data, which has been archived into a database using Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Bio-optical Archive and Storage System (SeaBASS), was applied and modified to consider the different spectral characteristics of GOCI-II. This method is officially employed in the National Oceanic and Atmospheric Administration (NOAA)'s ocean color satellite data processing system. It provides quality analysis scores for Rrs ranging from 0 to 1 and classifies the water types into 23 categories. When the QA algorithm is applied to the initial phase of GOCI-II data with less calibration, it shows the highest frequency at a relatively low score of 0.625. However, when the algorithm is applied to the improved GOCI-II atmospheric correction results with updated calibrations, it shows the highest frequency at a higher score of 0.875 compared to the previous results. The water types analysis using the QA algorithm indicated that parts of the East Sea, South Sea, and the Northwest Pacific Ocean are primarily characterized as relatively clear case-I waters, while the coastal areas of the Yellow Sea and the East China Sea are mainly classified as highly turbid case-II waters. We expect that the QA algorithm will support GOCI-II users in terms of not only statistically identifying Rrs resulted with significant errors but also more reliable calibration with quality assured data. The algorithm will be included in the level-2 flag data provided with GOCI-II atmospheric correction.

A Study on the Prediction of Gate In-Out Truck Waiting Time in the Container Terminal (컨테이너 터미널 내 반출입 차량 대기시간 예측에 관한 연구)

  • Kim, Yeong-Il;Shin, Jae-Young;Park, Hyoung-Jun
    • Journal of Navigation and Port Research
    • /
    • v.46 no.4
    • /
    • pp.344-350
    • /
    • 2022
  • Due to the increase in container cargo volume, the congestion of container terminals is increasing and the waiting time of gate in-out trucks has significantly lengthened at container yards and gates, resulting in severe inefficiency in gate in-out truck operations as well as port operations. To resolve this problem, the Busan Port Authority and terminal operator provide services such VBS, terminal congestion information, and expected operation processing time information. However, the visible effect remains insufficient, as it may differ from actual waiting time.. Thus, as basic data to resolve this problem, this study presents deep learning based average gate in-out truck waiting time prediction models, using container gate in-out information at Busan New Port. As a result of verifying the predictive rate through comparison with the actual average waiting time, it was confirmed that the proposed predictive models showed high predictive rate.