Browse > Article
http://dx.doi.org/10.7780/kjrs.2021.37.6.1.1

GEMS BrO Retrieval Sensitivity Test Using a Radiative Transfer Model  

Chong, Heesung (Department of Atmospheric Sciences, Yonsei University)
Kim, Jhoon (Department of Atmospheric Sciences, Yonsei University)
Jeong, Ukkyo (Earth System Science Interdisciplinary Center, University of Maryland)
Park, Sang Seo (School of Urban & Environmental Engineering, Ulsan National Institute of Science and Technology)
Hong, Jaemin (Department of Atmospheric Sciences, Yonsei University)
Ahn, Dha Hyun (Department of Atmospheric Sciences, Yonsei University)
Cha, Hyeji (Department of Atmospheric Sciences, Yonsei University)
Lee, Won-Jin (Environmental Satellite Center, National Institute of Environmental Research)
Lee, Hae-jung (Environmental Satellite Center, National Institute of Environmental Research)
Publication Information
Korean Journal of Remote Sensing / v.37, no.6_1, 2021 , pp. 1491-1506 More about this Journal
Abstract
To estimate errors in GEMS retrievals for bromine monoxide (BrO) total vertical column densities(VCDs), we perform a sensitivity test using synthetic spectra generated by a radiative transfer model. Hourly synthetic data are produced for 00-07 UTC on the first day of every month in Jul 2013- Jun 2014. Solution errors estimated by the optimal estimation method tend to decrease with increasing air mass factors (AMFs) but increase when AMFs are larger than 5. Interference errors induced by formaldehyde (HCHO) absorption appear to be larger with smaller BrO AMFs. Total BrO retrieval errors estimated by combining solution and interference errors show an average of 26.74±30.18% for all data samples and 60.39±133.78% for those with solar zenith angles higher than 80°. Due to interfering spectral features and measurement errors not considered in thisstudy, errorsin BrO retrievals from actual GEMS measurements may have different magnitudes from our estimates. However, the variability of errors assessed in this study is still expected to appear in the actual BrO retrievals.
Keywords
GEMS; Bromine monoxide; Retrievalsensitivity test; Optimal estimation; Synthetic spectra;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hegels, E., P.J. Crutzen, T. Klupfel, D. Perner, and J.P. Burrows, 1998. Global distribution of atmospheric bromine-monoxide from GOME on earth observing satellite ERS-2, Geophysical Research Letters, 25(16): 3127-3130.   DOI
2 Gonzalez Abad, G., A. Vasilkov, C. Seftor, X. Liu, and K. Chance, 2016. Smithsonian Astrophysical Observatory Ozone Mapping and Profiler Suite (SAO OMPS) formaldehyde retrieval, Atmospheric Measurement Techniques, 9(7): 2797-2812.   DOI
3 Li, Q., A. Badia, T. Wang, G. Sarwar, X. Fu, L. Zhang, Q. Zhang, J. Fung, C.A. Cuevas, S. Wang, B. Zhou, and A. Saiz-Lopez, 2020. Potential effect of halogens on atmospheric oxidation and air quality in China, Journal of Geophysical Research: Atmosphere, 125: D32058.
4 Li, Q., X. Fu, X. Peng, W. Wang, A. Badia, R.P. Fernandez, C.A. Cuevas, Y. Mu, J. Chen, J.L. Jimenez, T. Wang, and A. Saiz-Lopez, 2021. Halogens enhance haze pollution in China, Environmental Science & Technology, 55(20): 13625-13637.   DOI
5 Hormann, C., H. Sihler, N. Bobrowski, S. Beirle, M.P. de Vries, U. Platt, and T. Wager, 2013. Systematic investigation of bromine monoxide in volcanic plumes from space by using the GOME-2 instrument, Atmospheric Chemistry and Physics, 13(9): 4749-4781.   DOI
6 Iglesias-Suarez, F., A. Badia, R.P. Fernandez, C.A. Cuevas, D.E. Kinnison, S. Tilmes, J.-F. Lamarque, M.C. Long, R. Hossaini, and A. Saiz-Lopez, 2020. Natural halogens buffer tropospheric ozone in a changing climate, Nature Climate Change, 10(2): 147-154.   DOI
7 Nowlan, C.R., X. Liu, K. Chance, Z. Cai, T.P. Kurosu, C. Lee, and R.V. Martin, 2011. Retrievals of sulfur dioxide from the Global Ozone Monitoring Experiment 2 (GOME-2) using an optimal estimation approach: Algorithm and initial validation, Journal of Geophysical Research, 116: D18301.   DOI
8 Warnach, S., N. Bobrowski, S. Hidalgo, S. Arellano, H. Sihler, F. Dinger, P. Lubcke, J. Battaglia, A. Steele, B. Galle, U. Platt, and T. Wagner, 2019. Variation of the BrO/SO2 molar ratio in the plume of Tungurahua volcano between 2007 and 2017 and its relationship to volcanic activity, Frontiers in Earth Science, 7: 132.   DOI
9 Ziemke, J.R., L.D. Oman, S.A. Strode, A.R. Douglass, M.A. Olsen, R.D. McPeters, P.K. Bhartia, L. Froidevaux, G.J. Labow, J.C. Witte, A.M. Thompson, D.P. Haffner, N.A. Kramarova, S.M. Frith, L.-K. Huang, G.R. Jaross, C.J. Seftor, M.T. Deland, and S.L. Taylor, 2019. Trends in global tropospheric ozone inferred from a composite record of TOMS/OMI/MLS/OMPS satellite measurements and the MERAA-2 GMI simulation, Atmospheric Chemistry and Physics, 19(5): 3257-3269.   DOI
10 Huang, Y., X. Lu, J.C.H. Fung, G. Sarwar, Z. Li, Q. Li, A. Saiz-Lopez, and A.K.H. Lau, 2021. Effect of bromine and iodine chemistry on tropospheric ozone over Asia-Pacific using the CMAQ model, Chemosphere, 262: 127595.   DOI
11 Seo, S., A. Richter, A.-M. Blechschmidt, I. Bougoudis, and J.P. Burrows, 2019. First high-resolution BrO column retrievals from TROPOMI, Atmospheric Measurement Techniques, 12: 2913-2932.   DOI
12 O'Dell, C.W., B. Connor, H. Bosch, D. O'Brien, C. Frankenberg, R. Castano, M. Christi, D. Eldering, B. Fisher, M. Gunson, J. McDuffie, C.E. Miller, V. Natraj, F. Oyafuso, I. Polonsky, M. Smyth, T. Taylor, G.C. Toon, P.O. Wennberg, and D. Wunch, 2012. The ACOS CO2 retrieval algorithm - Part 1: Description and validation against synthetic observations, Atmospheric Measurement Techniques, 5: 99-121.   DOI
13 Ritchter, A., F. Wittrock, M. Eisinger, and J.P. Burrows, 1998. GOME observations of tropospheric BrO in northern hemispheric spring and summer 1997, Geophysical Research Letters, 25(14): 2683-2686.   DOI
14 Rozanov, V.V. and A.V. Rozanov, 2010. Differential optical absorption spectroscopy (DOAS) and air mass factor concept for a multiply scattering vertically inhomogeneous medium: theoretical consideration, Atmospheric Measurement Techniques, 3: 751-780.   DOI
15 Spurr, R., 2008. LIDORT and VLIDORT: Linearized pseudo-spherical scalar and vector discrete ordinate radiative transfer models for use in remote sensing retrieval problems, Light scattering reviews 3, Springer, Berlin, Heidelberg, GER.
16 Spurr, R.J.D., 2006. VLIDORT: a linearized pseudo-spherical vector discrete ordinate radiative transfer code for forward model and retrieval studies in multilayer multiple scattering media, Journal of Quantitative Spectroscopy and Radiative Transfer, 102: 316-342.   DOI
17 Sussmann, R. and T. Borsdorff, 2007. Technical note: Interference errors in infrared remote sounding of the atmosphere, Atmospheric Chemistry and Physics, 7: 3537-3557.   DOI
18 Kim, J., U. Jeong, M.-H. Ahn, J.H. Kim, R.J. Park, H. Lee, C.H. Song, Y.-S. Choi, K.-H. Lee, J.-M. Yoo, M.-J. Jeong, S.K. Park, K.-M. Lee, C.-K. Song, S.-W. Kim, Y.J. Kim, S.-W. Kim, M. Kim, S. Go, X. Liu, K. Chance, C. Chan Miller, J. Al-saadi, B. Veihelmann, P.K. Bhartia, O. Torres, G. Gonzalez Abad, D.P. Haffner, D.H. Ko, S.H. Lee, J.-H. Woo, H. Chong, S.S. Park, D. Nicks, W.J. Choi, K.-J. Moon, A. Cho, J. Yoon, S.-K. Kim, H. Hong, K. Lee, H. Lee, S. Lee, M. Choi, P. Veefkind, P.F. Levelt, D.P. Edwards, M. Kang, M. Eo, J. Bak, K. Baek, H.-A. Kwon, J. Yang, J. Park, K.M. Han, B.-R. Kim, H.-W. Shin, H. Choi, E. Lee, J. Chong, Y. Cha, J.-H. Koo, H. Irie, S. Hayashida, Y. Kasai, Y. Kanaya, C. Liu, J. Lin, J.H. Crawford, G.R. Carmichael, M.J. Newchurch, B.L. Lefer, J.R. Herman, R.J. Swap, A.K.H. Lau, T.P. Kurosu, G. Jaross, B. Ahlers, M. Dobber, C.T. McElroy, and Y. Choi, 2020. New era of air quality from Space: Geostationary Environment Monitoring Spectrometer (GEMS), Bulletin of the American Meteorological Society, 101(1): E1-E22.   DOI
19 Kleipool, Q.L., M.R. Dobber, J.F. de Hann, and P.F. Levelt, 2008. Earth surface reflectance climatology from 3 years of OMI data, Journal of Geophysical Research: Atmosphere, 113: D18308.   DOI
20 NIER (national Institute Environmental Research), 2020. Annual report of air quality in Korea, 2019, Ministry of Environment, Incheon, KOR.
21 Theys, N., M. Van Roozendael, F. Hendrick, X. Yang, I. De Smedt, A. Richter, M. Begoin, Q. Errera, P.V. Johnston, K. Kreher, and M. De Maziere, 2011. Global observations of tropospheric BrO columns using GOME-2 satellite data, Atmospheric Chemistry and Physics, 11(4): 1791-1811.   DOI
22 Palmer, P.I., D.J. Jacob, K. Chance, R.V. Martin, R.J.D. Spurr, T.P. Kurosu, I. Bey, R. Yantosca, A. Fiore, and Q. Li, 2001. Air mass factor formulation for spectroscopic measurements from satellites: Application to formaldehyde retrievals from the Global Ozone Monitoring Experiment, Journal of Geophysical Research, 106(D13): 14539-14550.   DOI
23 Theys, N., M. Van Roozendael, B. Dils, F. Hendrick, N. Hao, and M. De Maziere, 2009a. First satellite detection of volcanic bromine monoxide emission after the Kasatochi eruption, Geophysical Research Letters, 36(3): L03809.   DOI
24 Theys, N., M. Van Roozendael, Q. Errera, F. Hendrick, F. Daerden, S. Chabrillat, M. Dorf, K. Pfeilsticker, A. Rozanov, W. Lotz, J. P. Burrows, J.-C. Lambert, F. Goutail, H.K. Roscoe, and M. De Maziere, 2009b. A global stratospheric bromine monoxide climatology based on the BASCOE chemical transport model, Atmospheric Chemistry and Physics, 9(3): 831-848.   DOI
25 von Glasow, R., R. von Kuhlmann, M.G. Lawrence, U. Platt, and P.J. Crutzen, 2004. Impact of reactive bromine chemistry in the troposphere, Atmospheric Chemistry and Physics, 4(11): 2481-2497.   DOI
26 Zoogman, P., X. Liu, R.M. Suleiman, W.F. Pennington, D.E. Flittner, J.A. Al-Saadi, B.B. Hilton, D.K. Nicks, M.J. Newchurch, J.L. Carr, S.J. Janz, M.R. Andraschko, A. Arola, B.D. Baker, B.P. Canova, C. Chan Miller, R.C. Cohen, J.E. Davis, M.E. Dussault, D.P. Edwards, J. Fishman, A. Ghulam, G. Gonzalez Abad, M. Grutter, J.R. Herman, J. Houck, D.J. Jacob, J. Joiner, B.J. Kerridge, J. Kim, N.A. Krotkov, L. Lamsal, C. Li, A. Lindfors, R.V. Martin, C.T. McElroy, C. McLinden, V. Natraj, D.O. Neil, C.R. Nowlan, E.J. O'Sullivan, P.I. Palmer, R.B. Pierce, M.R. Pippin, A. Saiz-Lopez, R.J. D. Spurr, J.J. Szykman, O. Torres, J.P. Veefkind, B. Veihelmann, H. Wang, J. Wang, and K. Chance, 2017. Tropospheric emissions: Monitoring of pollution (TEMPO), Journal of Quantitative Spectroscopy and Radiative Transfer, 186: 17-39.   DOI
27 Wagner, T. and U. Platt, 1998. Satellite mapping of enhanced BrO concentrations in the troposphere, Nature, 395(6701): 486-490.   DOI
28 Rodgers, C.D., 2000. Inverse methods for atmospheric sounding: theory and practice, Series on Atmospheric, Oceanic and Planetary Physics - Vol. 2, World Scientific, SIN.
29 Suleiman, R.M., K. Chance, X. Liu, G. Gonzalez Abad, T.P. Kurosu, F. Hendrick, and N. Theys, 2019. OMI total bromine monoxide (OMBRO) data product: algorithm, retrieval and measurement comparisons, Atmospheric Measurement Techniques, 12: 2067-2084.   DOI
30 Bobrowski, N. and G. Giuffrida, 2012. Bromine monoxide / sulphur dioxide ratios in relation to volcanological observations at Mt. Etna 2006-2009, Solid Earth, 3(2): 433-445.   DOI
31 Lubcke, P., N. Bobrowski, S. Arellano, B. Galle, G. Garzon, L. Vogel, and U. Platt, 2014. BrO/SO2 molar ratios from scanning DOAS measurements in the NOVAC network, Solid Earth, 5: 409-424.   DOI
32 Hormann, C., H. Sihler, S. Beirle, M.P. de Vries, U. Platt, and T. Wagner, 2016. Seasonal variation of tropospheric bromine monoxide over the Rann of Kutch salt marsh seen from space, Atmospheric Chemistry and Physics, 16(20): 13015-13034.   DOI
33 Chance, K., 1998. Analysis of BrO measurements from the Global Ozone Monitoring Experiment, Geophysical Research Letters, 25(17): 3335-3338.   DOI
34 Dinger, F., N. Bobrowski, S. Warnach, S. Bredemeyer, S. Hidalgo, S. Arellano, B. Galle, U. Platt, and T. Wagner, 2018. Periodicity in the BrO/SO2 molar ratios in the volcanic gas plume of Cotopaxi and its correlation with the Earth tides during the eruption in 2015, Solid Earth, 9(2): 247-266.   DOI
35 Hu, L., C.A. Keller, M.S. Long, T. Sherwen, B. Auer, A. Da Silva, J.E. Nielsen, S. Pawson, M.A. Thompson, A.L. Trayanov, K.R. Travis, S.K. Grange, M.J. Evans, and D.J. Jacob, 2018. Global simulation of tropospheric chemistry at 12.5 km resolution: performance and evaluation of the GEOS-Chem chemical module (v10-1) within the NASA GEOS Earth system model (GEOS-5 ESM), Geoscientific Model Development, 11(11): 4603-4620.   DOI
36 Jeong, U., 2015. Error analysis and characterization of the atmospheric trace gas and aerosol inversion products from the hyper-spectral remote sensing measurements based on the optimal estimation method, Yonsei University, Sinchon, Seoul, KOR.