일반 상식 기반의 지식 그래프는 대규모 코퍼스에 포함되어 있는 일반 상식을 수집하고 구조화하는 지식의 표현 방법이다. 일반 상식 기반의 지식 그래프는 코퍼스 내에 포함되어 있는 다양한 일반 상식의 형태와 관계를 모델링하며, 주로 질의응답 시스템, 상식 추론 등의 자연어처리 하위 작업에 활용할 수 있다. 가장 잘 알려진 일반 상식 기반의 지식 그래프로는 ConceptNet [1], ATOMIC [2]이 있다. 하지만 한국어 기반의 일반 상식 기반의 지식 그래프에 대한 연구가 존재했지만, 자연어처리 태스크에 활용하기에는 충분하지 않다. 본 연구에서는 대규모 언어 모델과 프롬프트의 활용을 통해 한국어 일반 상식 기반의 지식 그래프를 효과적으로 구축하는 방법론을 제시한다. 또한, 제안하는 방법론으로 구축한 지식 그래프와 기존의 한국어 상식 그래프의 품질을 양적, 질적으로 검증한다.
본 연구는 생성형 대규모 언어 모델을 활용하여 텍스트에서 정보를 추출하기 위한 한글 데이터셋 구축 방법을 탐구한다. 현대 사회에서는 혼합된 정보가 빠르게 유포되며, 이를 효과적으로 분류하고 추출하는 것은 의사결정 과정에 중요하다. 그러나 이에 대한 학습용 한국어 데이터셋은 아직 부족하다. 이를 극복하기 위해, 본 연구는 생성형 대규모 언어 모델을 사용하여 텍스트 기반 제로샷 학습(zero-shot learning)을 이용한 정보 추출을 시도하며, 이를 통해 목적에 맞는 한국어 데이터셋을 구축한다. 본 연구에서는 시스템-지침-소스입력-출력형식의 프롬프트 엔지니어링을 통해 언어 모델이 원하는 결과를 출력하도록 지시하며, 입력 문장을 통해 언어 모델의 In-Context Learning 특성을 활용하여 데이터셋을 구축한다. 생성된 데이터셋을 기존 데이터셋과 비교하여 본 연구 방법론을 검증하며, 관계 정보 추출 작업의 경우 KLUE-RoBERTa-large 모델 대비 25.47% 더 높은 성능을 달성했다. 이 연구 결과는 한국어 텍스트에서 지식 요소를 추출하는 가능성을 제시함으로써 인공지능 연구에 도움을 줄 것으로 기대된다. 더욱이, 이 방법론은 다양한 분야나 목적에 맞게 활용될 수 있어, 다양한 한국어 데이터셋 구축에 잠재력을 가진다고 볼 수 있다.
본 논문에서는 대규모 네트워크 보안관리를 위한 계층적인 위임 모델을 제시한다. 대규모 네트워크는 라우터, 방화벽, 침입 탐지 시스템, 웹 서버 등의 수많은 구성요소로 이루어진 네트워크들의 집합이며, 각 네트워크마다의 독립적인 지역 정책들로 관리되어 서로간의 협동이 이루어질 수 없기 때문에 이를 효과적으로 통제하고 일괄적으로 관리하기 위해 계층적인 위임 모델이 사용되어야 한다. 제시하는 모델의 중요 구성 요소로는 관리 서버. 정책 설정 고 수준 언어 고 수준 언어 컴파일러, 도메인 서버. 인터프리터, 정책 관리 데이터베이스가 있다. 관리 서버에서 정책 설정 고 수준 언어를 사용하여 세밀하고 정교한 정책을 작성할 수 있고, 이 정책을 고 수준 언어 컴파일러를 통하여 최하위 노드들에게 적절하고 간결한 형태로 만들어낸다. 각 도메인 서버는 이 결과를 하위의 도메인 서버나 인터프리터에게 전달하면서 Keynote 신뢰 관리 시스템을 이용하여 권한을 위임한다. 그리고 인터프리터는 정책을 라우터, 방화벽, 웹 서버 등의 하위 노드에 맞는 실제 룰로 변환하녀 상위 관리 서버에서 전달한 정책을 적용하게 된다. 정책을 적용한 결과를 상위로 전달하여 데이터베이스를 구축한 뒤 후에 작성된 정책이 기존의 정책과 충돌하는지 검사에 이용하고, 충돌한다면 협상 과정을 거쳐 정책에 순응할 수 있는 결과를 도굴하게 된다. 또한 네트워크에서 많은 새로운 형태들의 노드가 추가될 수 있는데, 각각의 인터프리터만 추가함으로서 다양한 하위 노드를 충족시킬 수 있는 확장성을 제공한다.
본 논문에서는 대규모 언어 모델(Large Language Models)을 기반으로 한 입학 상담용 챗봇을 설계하였다. 입시 전문 LLM은 Polyglot-ko 5.8B을 베이스 모델로 대학의 입시 관련 데이터를 수집, 가공한 후 데이터 증강을 하여 파인튜닝 하였다. 또한, 모델 성능 향상을 위해 RLHF의 후 공정을 진행하였다. 제안 챗봇은 생성한 입시 LLM을 기반으로 웹브라우저를 통해 접근하여 입시 상담 자동 응답 서비스를 활용할 수 있다.
이 논문에서 우리는 대규모 어휘를 갖는 연속 음성 인식을 위한 방법을 제시한다. 우리말은 영어와 구조적으로 달라서 대용량 어휘를 갖는 연속 음성을 인식하기 위한 언어모델을 만들기가 매우 어렵다. 언어 모델을 우리말 문장에 적용하기 위해 신문의 사설을 3-gram을 이용하여 처리하였다. 우리의 인식 시스템을 평가하기 위하여 시스템 공학 연구소에서 제공한 낭독 음성을 대상으로 인식률을 계산하였다. 589개의 문장을 대상으로 총 20명이 발음한 3,156개의 문장에 대하여 남자 92.2%, 여자 87.9%의 인식률을 얻었다. 발음사전은 낭독음성과 신문 사설에서 추출한 10K 크기이며 uniphone의 음성모델을 사용하였다.
일반적으로 대규모 언어 모델들은 다량의 데이터를 오랜시간 사전학습하면서 레이블을 예측하기 위한 성능을 높여왔다. 최근 언어 모델의 레이블 예측에 대한 정확도가 높아지면서, 언어 모델이 왜 해당 결정을 내렸는지 이해하기 위한 신뢰도 높은 Natural Language Explanation(NLE) 을 생성하는 것이 시간이 지남에 따라 주요 요소로 자리잡고 있다. 본 논문에서는 높은 레이블 정확도를 유지하면서 동시에 언어 모델의 예측에 대한 신뢰도 높은 explanation 을 생성하는 참신한 자연어 추론 시스템을 제시한 Natural-language Inference over Label-specific Explanations(NILE)[1] 을 소개하고 한국어 데이터셋을 이용해 NILE 과 NLE 를 활용하지 않는 일반적인 자연어 추론 태스크의 성능을 비교한다.
최근 등장한 대규모 데이터로 사전학습된 자연어 생성 모델들은 대화 능력 및 코드 생성 태스크등에서 인상적인 성능을 보여주고 있어, 본 논문에서는 대형 언어 모델 (LLM)의 한국어 질문을 SQL 쿼리 (Text-to-SQL) 변환하는 성능을 평가하고자 한다. 먼저, 영어 Text-to-SQL 벤치마크 데이터셋을 활용하여 영어 질의문을 한국어 질의문으로 번역하여 한국어 Text-to-SQL 데이터셋으로 만들었다. 대형 생성형 모델 (GPT-3 davinci, GPT-3 turbo) 의 few-shot 세팅에서 성능 평가를 진행하며, fine-tuning 없이도 대형 언어 모델들의 경쟁력있는 한국어 Text-to-SQL 변환 성능을 확인한다. 또한, 에러 분석을 수행하여 한국어 문장을 데이터베이스 쿼리문으로 변환하는 과정에서 발생하는 다양한 문제와 프롬프트 기법을 활용한 가능한 해결책을 제시한다.
대화생성은 대규모 학습 데이터로부터 사전 학습된 언어모델을 활용한 도전적인 다운스트림 태스크 중 하나이다. 대화에서 특정한 지식에 대한 맥락이 보존된 응답 문장을 생성하기 위한 기술의 일환으로써 지식 기반 대화생성이 연구되고 있으며, 현업에서는 사업목표에 따른 대화 서비스를 제공하는 목적으로 이러한 기술을 적용할 수 있다. 본 논문에서는, 각각의 서비스 도메인에 특화된 모델을 적절히 활용 가능하도록 전체 데이터를 도메인별로 구분하여 학습한 다수의 대화생성 모델을 구축한다. 또한, 특정 도메인의 데이터로 학습된 모델이 나머지 도메인에서 어떤 수준의 대화생성이 가능한지 비교 분석함으로써 개별 학습된 모델들이 도메인의 특성에 따라 서로 다른 영향력이나 연관성을 나타낼 가능성을 확인한다. 이러한 실험적인 분석 결과를 바탕으로 현업의 서비스에서 개별 도메인에 특화된 모델이 적절히 활용하는 것이 유용함을 확인하고자 한다.
본 논문에서는 금융 도메인 특화 사전학습 언어모델인 KF-DeBERTa(Korean Finance DeBERTa)를 제안한다. KF-DeBERTa는 대규모의 금융 말뭉치를 기반으로 학습하였으며, Transformer 아키텍처와 DeBERTa의 특징을 기반으로 구성되었다. 범용 및 금융 도메인에 대한 평가에서 KF-DeBERTa는 기존 언어모델들에 비해 상당히 높은 성능을 보였다. 특히, 금융 도메인에서의 성능은 매우 두드러졌으며, 범용 도메인에서도 다른 모델들을 상회하는 성능을 나타냈다. KF-DeBERTa는 모델 크기 대비 높은 성능 효율성을 보여주었고, 앞으로 금융 도메인에서의 활용도가 기대된다.
본 논문에서는 파이썬 코딩 플랫폼에서의 LLM(Large Language Models)을 로직 및 문법 에러 확인, 디버깅 도구로 활용할 수 있는 시스템을 제안한다. 이 시스템은 사용자가 코딩 플랫폼에서 작성한 파이썬 코드와 함께 발생한 에러 문구 및 프롬프트를 LLM 모델에 입력함으로써 로직(문법) 에러를 식별하고 디버깅에 활용할 수 있다. 특히, 입문자를 고려해 프롬프트를 제한하여 사용의 편의성을 높인다. 이를 통해 파이썬 코딩 교육에서 입문자들의 학습 과정을 원활하게 진행할 수 있으며, 파이썬 코딩에 대한 진입 장벽을 낮출 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.