• Title/Summary/Keyword: 대구경

Search Result 338, Processing Time 0.029 seconds

Characterization of Area Installing Combined Geothermal Systems : Hydrogeological Properties of Aquifer (복합지열시스템에 대한 부지특성화: 대수층의 수리지질학적 특성)

  • Mok, Jong-Koo;Park, Yu-Chul;Park, Youngyun;Kim, Seung-Kyum;Oh, Jeong-Seok;Seonwoo, Eun-Mi
    • The Journal of Engineering Geology
    • /
    • v.27 no.3
    • /
    • pp.293-304
    • /
    • 2017
  • This study was performed in order to hydrogeological analysis of aquifer, which is a necessary part for evaluating the efficiency of the combined well and open-closed loops geothermal (CWG) systems. CWG systems have been proposed for the effective utilization of geothermal energy by combining open loop geothermal systems and closed loop geothermal systems. Small aperture CWG systems and large aperture CWG systems were installed at a green house land with water curtain facilities in Chungju City. Aquifer tests include pumping tests and step-drawdown tests were conducted to analyse hydrogeological characteristics of aquifer in the study area. The transmissivity was estimated in the range of $13.49{\sim}58.99cm^2/sec$, and the storativity was estimated in the range of $1.13{\times}10^{-5}{\sim}5.20{\times}10^{-3}$. The geochemical analysis showed $Ca^{2+}$ ion and ${HCO_3}^-$ ion were dominant in groundwater. The Langelier Saturation Index and the Ryznar Stability Index showed low scaling potential of groundwater. In the analysis of vertical water temperature change, the geothermal gradient was estimated as $2.1^{\circ}C/100m$, which indicated the aquifer was enough for geothermal systems. In conclusion, groundwater is rich, can stably use geothermal heat, and it is less likely to cause deterioration of thermal energy efficiency by precipitation of carbonate minerals in study area. Therefore, the study area is suitable for installation of the combined geothermal system.

Assessment of external corrosion deterioration of large diameter metallic water pipes buried in reclaimed land (간척지대에 매설된 대구경 금속관의 외면 부식손상 평가)

  • Lee, Ho-Min;Choi, Tae-Ho;Kim, Jung-Hyun;Bae, Cheol-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.5
    • /
    • pp.373-383
    • /
    • 2020
  • The purpose of this study was to evaluate the corrosion damage of large diameter metallic pipes buried in reclaimed land due to the corrosion effect by soil, and to propose a method of installing metal pipes in the reclaimed land. The results are as follow. First, the soil of the reclaimed land was gray clay, the soil specific resistance indicating soil corrosiveness was at least 120 Ω-cm, the pH was weakly acidic(5.04 to 5.60), the redox potential was at least 62 mV, the moisture content was at most 48.8%, and chlorine ions and sulfate ions were up to 4,706.1 mg/kg and 420 mg/kg. Therefore, the overall soil corrosivity score was up to 19, and the external corrosion effect seems to be very large. Second, the condition of straight part of pipes was in good condition, but most of KP joints were affected by corrosion at a severe level. The reason for this seems to be that KP joints accelerated corrosion due to stress and crevice corrosion in addition to galvanic corrosion in the same environment. Third, as a result of evaluating correlations of each item that affects the corrosion on the external part, the lower the soil resistivity and redox potential, the greater the effect on the KP joints corrosion, and the moisture content, chloride ion, and sulfate ion, the higher the value, the greater the effect on the corrosion of KP joints. In addition, among soil corrosion items, the coefficient of determination of soil resistivity with corrosion of KP joints was the highest with 0.6439~0.7672. Fourth, when installing metal pipes or other accessories because the soil of the reclaimed land is highly corrosive, it is necessary to apply a corrosion preventive method to extend the life of pipes and prevent leakage accidents caused by corrosion damage to the joint.

Development of Nonlinear Spring Modeling Technique of Group Suction Piles in Clay (점성토 지반에 근입된 그룹 석션파일에 대한 비선형 스프링 모델링 기법 개발)

  • Lee, Si-Hoon;Lee, Ju-Hyung;Tran, Xuan Nghiem;Kim, Sung-Ryul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • Recently, several researches on the development of new economical anchor systems have been performed to support floating structures. This study focused on the group suction piles, which connect mid-sized suction piles instead of a single suction pile with large-diameter. The group suction pile shows the complex bearing behavior with translation and rotation, so it is difficult to apply conventional design methods. Therefore, the numerical modeling technique was developed to evaluate the horizontal bearing capacity of the group suction piles in clay. The technique models suction piles as beam elements and soil reaction as non-linear springs. To analyze the applicability of the modeling, the horizontal load-movement curves of the proposed modeling were compared with those of three-dimensional finite element analyses. The comparison showed that the modeling underestimates the capacity and overestimate the displacement corresponding to the maximum capacity. Therefore, the correction factors for the horizontal soil resistance was proposed to match the bearing capacity from the three-dimensional finite element analyses.

Performance evaluation by simulation for the angular luminous intensity distributions of marine lanterns using a tilting aspherical Fresnel lens and a C-8 type light bulb (기울어진 비구면 프레넬 렌즈와 C-8 type 전구를 이용한 해상용 랜턴의 배광곡선 시뮬레이션을 통한 성능평가)

  • Cho Hyun Seok;Jo Jae Heung;Park Seungl Nam;Park Chul Woung;Kim Yong Wan;Kim Jong Tae
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.6
    • /
    • pp.511-518
    • /
    • 2004
  • Providing marine signal lanterns with advantages of little weight as well as large aperture, a Fresnel lens has been adopted to transfer the beam from the lanterns up to 10 nautical miles (18.53 km). A Fresnel lens with the diameter of 250 mm and 300 mm was designed by a lens design program and optimized by adjusting the groove parameters of the lens. The angular luminous intensity distribution (ALID) of this lens was calculated by using an illumination analysis program considering the ALID of a light bulb. At the best alignment of the bulb, the maximum luminous intensities (MLI) of the lantern were 1000 cd (in the case of 250 mm diameter) and 1300 cd (in the case of 300 mm diameter). These are more than the critical value of 720 cd that is the Korean Standard of MLI for the marine lantern. The ALID was investigated as a function of misalignment from the lens focus to determine the tolerance of the alignment ranges.

Development of the Automated Ultrasonic Testing System for Inspection of the flaw in the Socket Weldment (소켓 용접부 결함 검사용 초음파 자동 검사 장비 개발)

  • Lee, Jeong-Ki;Park, Moon-Ho;Park, Ki-Sung;Lee, Jae-Ho;Lim, Sung-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.3
    • /
    • pp.275-281
    • /
    • 2004
  • Socket weldment used to change the flow direction of fluid nay have flaws such as lack of fusion and cracks. Liquid penetrant testing or Radiography testing have been applied as NDT methods for flaw detection of the socket weldment. But it is difficult to detect the flaw inside of the socket weldment with these methods. In order to inspect the flaws inside the socket weldment, a ultrasonic testing method is established and a ultrasonic transducer and automated ultrasonic testing system are developed for the inspection. The automated ultrasonic testing system is based on the portable personal computer and operated by the program based Windows 98 or 2000. The system has a pulser/receiver, 100MHz high speed A/D board, and basic functions of ultrasonic flaw detector using the program. For the automated testing, motion controller board of ISA interface type is developed to control the 4-axis scanner and a real time iC-scan image of the automated testing is displayed on the monitor. A flaws with the size of less than 1mm in depth are evaluated smaller than its actual site in the testing, but the flaws larger than 1mm appear larger than its actual size on the contrary. This tendency is shown to be increasing as the flaw size increases. h reliable and objective testing results are obtained with the developed system, so that it is expected that it can contribute to safety management and detection of repair position of pipe lines of nuclear power plants and chemical plants.

CFD analysis for effects of the crucible geometry on melt convection and growth behavior during sapphire single crystal growth by Kyropoulos process (사파이어 단결정의 Kyropoulos 성장시 도가니 형상에 따른 유동장 및 결정성장 거동의 CFD 해석)

  • Ryu, J.H.;Lee, W.J.;Lee, Y.C.;Jo, H.H.;Park, Y.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.3
    • /
    • pp.115-121
    • /
    • 2012
  • Sapphire single crystals have been highlighted for epitaxial gallium nitride films in high-power laser and light emitting diode (LED) industries. Among the many crystal growth methods, the Kyropoulos process is an excellent commercial method for growing larger, high-optical-quality sapphire crystals with fewer defects. Because the properties and growth behavior of sapphire crystals are influenced largely by the temperature distribution and convection of molten sapphire during the manufacturing process, accurate predictions of the thermal fields and melt flow behavior are essential to design and optimize the Kyropoulos crystal growth process. In this study, computational fluid dynamic simulations were performed to examine the effects of the crucible geometry aspect ratio on melt convection during Kyropoulos sapphire crystal growth. The results through the evolution of various growth parameters on the temperature and velocity fields and convexity of the crystallization interface based on finite volume element simulations show that lower aspect ratio of the crucible geometry can be helpful for the quality of sapphire single crystal.

Field Installation Test of the Circular Steel Cofferdam Using Suction Pressure (석션압을 이용한 원형강관 가물막이 현장설치 실험)

  • Kim, Jae-Hyun;Xin, Zhen-Hua;Lee, Ju-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.10
    • /
    • pp.5-19
    • /
    • 2020
  • With increasing demand for offshore structures, the demand for temporary structures to help the offshore construction work has increased. A cofferdam is a temporary barrier to stop the inflow of water in the construction site and allows working in the dry condition when the construction is done within the water. However, it is a major cause of construction delays and increased costs because additional works are required to block the water inflow. Recently, in order to overcome the limitations of the conventional cofferdam methods and to increase economic efficiency, a large-diameter steel cofferdam method has been proposed which can be installed quickly in the seabed by using the suction pressure. In this circular steel cofferdam method, the top side of the cofferdam including the top-lid is always exposed above the sea level in order to use it as a water barrier, unlike the conventional suction bucket foundation. After installation, the top-lid of the cofferdam is removed and the water filled inside the cofferdam is discharged to make the interior dry condition. In this study, the circular steel cofferdam with a 5 m inner diameter was fabricated and the installation tests were conducted at the Saemaguem test site. During the experiment, variation of suction pressure, leakage between connections, structure deformation, and inclination of the steel cofferdam were measured and post-analyzed. This study verified the new circular steel cofferdam method and confirmed that the suction installation method can be successfully used for various purposes on offshore structures.

Analysis on Surface Collapse of the Road NATM Tunnel through the Weathered Rock (풍화대를 통과하는 도로 NATM 터널의 천단부 함몰에 대한 연구)

  • Shin, Eun-Chul;Yoo, Jai-Sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.2
    • /
    • pp.55-64
    • /
    • 2016
  • The construction of the road NATM tunnel, which undergoes the weathered zone of the mountain, was in process with the reinforcement methods such as the rock bolt, shotcrete depositing, and the multi step grout with large diameter steel pipe. The collapse from the ceiling, and on the ground surface area(sink hole), of which were measured to be 25m from the ground surface($V=12m(W){\times}14m(L){\times}5m(H)=840m^3$), as well as excessive displacements in the tunnel, had occurred. In order to execute the necessary reconstruction work, the causes of the surface collapses were inspected through the field investigation, in-situ tests, and numerical analysis. As a result, several proper solutions were suggested for both internal and external reinforcements for the tunnel. As a result of numerical analysis, the collapsed zone of the tunnel was reinforced up to 0.5D~1.0D laterally by the cement grouting on the ground surface, 0.5D longitudinally by the multi step grout with large diameter steel pipe in tunnel. With further reinforcement implemented by rebars in lining, the forward horizontal boring was executed to the rest of the tunnel to evaluate the overall status of the tunnel face. Appropriate reinforcement methods were provided if needed.

Evaluation of Heat Exchange Efficiency and Applicability for Parallel U-type Cast-in-place Energy Pile (병렬 U형 현장타설 에너지파일의 열교환 효율 및 적용성 평가)

  • Park, Sangwoo;Kim, Byeongyeon;Sung, Chihun;Choi, Hangseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.361-375
    • /
    • 2015
  • An energy pile is one of the novel ground heat exchangers (GHEX's) that is a economical alternative to the conventional closed-loop vertical GHEX. The combined system of both a structural foundation and a GHEX contains a heat exchange pipe inside the pile foundation and allows a working fluid circulating through the pipe, inducing heat exchange with the ground formation. In this paper, a group of energy piles equipped with parallel U-type (5, 8 and 10 pairs) heat exchange pipes was constructed in a test-bed by fabricating in large-diameter cast-in-place concrete piles. In addition, a closed-loop vertical GHEX with 30m depth was constructed nearby to conduct in-situ thermal response tests (TRTs) and to compare with the thermal performance of the cast-in-place energy piles. A series of thermal performance tests was carried out with application of an artificial cooling and heating load to evaluate the heat exchange rate of energy piles. The applicability of cast-in-place energy piles was evaluated by comparing the relative heat exchange efficiency and heat exchange rate with preceding studies. Finally, it is concluded that the cast-in-place energy piles constructed in the test-bed demonstrate effective and stable thermal performance compared with the other types of GHEX.

Statistical analysis of hazen-williams C and influencing factors in multi-regional water supply system (광역상수도 유속계수와 영향인자에 관한 통계적 분석)

  • Kim, Bumjun;Kim, Gilho;Kim, Hung soo
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.5
    • /
    • pp.399-410
    • /
    • 2016
  • In case of the application of Hazen-Williams C for design, operation or maintenance of water supply system, field situations always should be reflected on the factors. In this study, the relationships between C factors and influencing factors are analyzed using statistical techniques with 174 measured C factor data collected in periodic inspection for safety diagnosis in multi-regional water supply systems. To analyze their relationships, cross analysis, one-way ANOVA, correlation analysis were conducted. Analysis results showed that C factors had high correlations with both of elapsed year and pipe diameter and were relatively highly affected by coating material among influencing factors with the categorical type. On the other hand, elapsed year, pipe diameter and water type were meaningful influencing factors according to the results of multiple regression analysis. The Cluster analysis revealed that C factors had a tendency of being fundamentally classified on the basis of the elapsed year of about 20 years and the pipe diameter of 1500mm. Although C factors were generally greatly affected by elapsed year, size of pipe diameter relatively had an large influence on values of them in case of large diameter pipes. Lastly, It can be suggested that C factor estimation formulas using multiple regression analysis and clustering analysis in this study, can be applied as decision standards of C factor in multi-regional water supply systems.