• Title/Summary/Keyword: 대각 철근

Search Result 32, Processing Time 0.024 seconds

The Investigation of the Effects on Bent-up Bars within Beam-Column Joint Core with High-Strength Concrete (고강도 콘크리트 보-기둥접합부의 역학적 거동에 대한 연구 -구부림 철근을 중심으로-)

  • 이광수;오정근;신성우;최문식
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.2
    • /
    • pp.123-132
    • /
    • 1991
  • The purpose of this study was to Investigate the effects of bent - up bar Within beam - column 1lint core with High - Strength Concrete up to 800kg/$cm^2$. To achieve these objectives, 5 specimens were designed and tested under monotoric loading and reversed cyclic loadings. The primary variables were the number of bent-up bars, compressive strength of concrete and loading patterns. The results showed that the load capacity of specimen subjected to monotonic loading had more large than that of specirnn subjected to reversed cyclic loadings and the bent - up bar within joint core could prevented the crack at the joint face from propagating into the pint core but the failure was concentrated at the face of beam - column pint. Thus the study on flexural strength ratio should be accomplished before using bent - up bars within the joint core.

Seismic Performance of Special Reinforced Concrete Coupling Beams with Different Reinforcement Details (보강상세에 따른 특수전단벽 연결보의 내진성능)

  • Chun, Young-Soo;Park, Ji-Young
    • Land and Housing Review
    • /
    • v.6 no.1
    • /
    • pp.21-29
    • /
    • 2015
  • Coupling beams posses proper strength, stiffness and ductility capacities to resist efficiently under seismic loads. The strength, stiffness and ductility capacities for special diagonally reinforced concrete coupling beam with a span-to-depth ratio 2.0 or less is higher than those of coupling beam with conventionally reinforced concrete coupling beam. However, diagonally reinforced detailing creates major construction problem. In this study, design alternatives for diagonally reinforced concrete coupling beams were experimentally investigated. The results show that angle reinforced coupling beam(specimen SA) exhibited a better stable behavior in comparison with non-diagonally coupling beams(specimens SB-series) and sustained corresponding drift ratio, peak-to-peak stiffness and cumulative dissipated energy in comparison to diagonally coupling beam(specimen CA).

Nonlinear Analysis of RC Members Using Truss Model (트러스 모델을 이용한 철근콘크리트 부재의 비선형해석)

  • Eom, Tae-Sung;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.177-188
    • /
    • 2006
  • Conventional nonlinear finite element analysis requires complicated modeling and analytical technique. Furthermore, it is difficult to interpret the analytical results presented as the stress-strain relationship. In the present study, a design-oriented analytical method using the truss model was developed. A reinforced concrete member to be analyzed was idealized by longitudinal, transverse, and diagonal line elements. Basically, each element was modeled as a composite element of concrete and re-bars. Simplified cyclic models for the concrete and re-bar elements were developed. RC beams and walls with various reinforcement details were analyzed by the proposed method. The inelastic strength, energy dissipation capacity, deformability, and failure mode predicted by the proposed method were compared with those of existing experiments. The results showed that the proposed model accurately predicted the strength and energy dissipation capacities, and to predict deformability of the members, the compression-softening model used for the concrete strut element must be improved.

Longitudinal Elongation of Slender Reinforced Concrete Beams Subjected to Cyclic Loading (주기하중을 받는 세장한 철근콘크리트 보의 길이방향 인장변형)

  • Eom, Tae-Sung;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.785-796
    • /
    • 2008
  • Longitudinal elongation develops in reinforced concrete beams that exhibit flexural yielding during cyclic loading. The longitudinal elongation can decrease the shear strength and deformation capacity of the beams. In the present study, nonlinear truss model analysis was performed to study the elongation mechanism of reinforced concrete beams. The results showed that residual tensile plastic strain of the longitudinal reinforcing bar in the plastic hinge is the primary factor causing the member elongation, and that the shear-force transfer mechanism of diagonal concrete struts has a substantial effect on the magnitude of the elongation. Based on the analysis results, a simplified method for evaluating member elongation was developed. The proposed method was applied to test specimens with various design parameters and loading conditions.

Cyclic Behavior of Reinforced Concrete Coupling Beams with Bundled Diagonal Reinforcement (묶음 대각철근을 적용한 철근콘크리트 연결보의 이력거동 평가)

  • Han, Sang Whan;Kwon, Hyun Wook;Shin, Myung Su;Lee, Ki Hak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.117-124
    • /
    • 2014
  • Diagonal reinforced coupling beam of coupled shear walls can provide sufficient strength and stiffness to resist lateral force. However, the reinforcement details for coupling beams required by ACI 318 (2011) are difficult to construct because of the reinforcement congestion and confined interior area. This study presents experimental results about the seismic performance of coupling beams having bundled diagonal reinforcement to improve the workability. Experiments were conducted using half scaled precast coupling beams having an aspect ratio of 2.0. It was observed that the bundled diagonal reinforced coupling beams can develop seismic performance similar to the coupling beams with requirement details specified in ACI 318 (2011).

Macro Model for Nonlinear Analysis of Reinforced Concrete Walls (철근콘크리트 벽체의 비선형 해석을 위한 거시 모델)

  • Kim, Dong-Kwan;Eom, Tae-Sung;Lim, Young-Joo;Lee, Han-Seon;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.569-579
    • /
    • 2011
  • Reinforced concrete walls subjected to cyclic loading show complicated inelastic behaviors varying with aspect ratio, re-bar detail, and loading condition. In the present study, a macro model for nonlinear analysis of reinforced concrete walls was developed. For exact prediction of inelastic flexure-compression and shear behaviors, the macro model of the wall was idealized with longitudinal and diagonal uniaxial elements. The uniaxial elements consist of concrete and re-bars. Simplified cyclic models for concrete and re-bars under uniaxial loading was used. For verification, the proposed model was applied to slender, lowrise, and coupled walls subjected to cyclic loading. The results showed that the proposed method predicted the nonlinear behaviors of the walls with reasonable precision.

Research on the Non-linear Analysis of Reinforced Concrete Walls Considering Different Macroscopic Models (거시적 모델을 다르게 고려한 철근콘크리트 벽체의 비선형 해석 연구)

  • Shin, Ji-Uk;Kim, Jun-Hee;You, Young-Chan;Choi, Ki-Sun;Kim, Ho-Ryong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.1-11
    • /
    • 2012
  • In this paper, non-linear analysis was performed for Reinforced Concrete (RC) walls using different macroscopic models subjected to cyclic loading, and the analytical results were compared with previous experimental studies of RC walls. ASCE41-06 (American Society of Civil Engineers) specifies that the hysteresis behaviors of RC walls are different due to the aspect ratio of the walls. For a comparison between analytical and experimental results, a slender wall with an aspect ratio exceeding 3.0 and a squat wall with an aspect ratio of 1.0 were selected among previous research works. For the non-linear analysis, each test specimen was modeled using two different macroscopic methods: the first representing the flexural behavior of the RC wall, and the second considering the diagonal shear in the web of the wall. Through nonlinear analysis of the considered RC walls, the analytical difference of a slender wall was negligible due to the different macroscopic modeling methods. However, the squat wall was significantly affected by the considered components of the modeling method. For an accurate performance evaluation of the RC building with squat walls, it would be reasonable to use a macroscopic model considering diagonal shear.

Fragility Analysis of RC Moment Resisting Framewith Masonry Infill Walls (비내력벽을 가진 RC모멘트저항골조의 취약도 해석)

  • Ko, Hyun;Park, Yong-Koo;Choi, Byeong-Tae;Kim, Min-Gyun;Lee, Ui-Hyun;Lee, Dong-Guen
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.442-445
    • /
    • 2009
  • 지진에 대한 건축물의 확률적 성능평가에 대해서는 지진하중에 대한 건축물의 손상확률 또는 파괴확률을 나타내는 지진취약도 함수를 작성하여 대상 건축물에 대한 지진위험도를 평가하는 방법을 이용하고 있으며 이에 대한 많은 연구가 이루어지고 있다. 본 연구에서는 지진하중과 구조물 재료특성의 불확실성을 고려하고 대상 건축물의 지진취약도 해석을 통하여 비내력벽의 유무에 따른 건축물의 지진거동 및 내진성능을 평가하였다. 비내력벽을 보편화된 모형화 방법인 등가의 대각 압축 스트럿으로 고려하여 비내력벽의 유무에 따른 저층 철근콘크리트 건축물을 모형화하였으며 지진하중의 강도는 유효최대지반가속도를 이용하여 각 건축물에 대하여 지진취약도를 작성하였다. 취약도해석 결과로 연약층을 가지고 있는 건축물의 경우는 손상확률이 골조만 있는 경우보다 크며 동일한 해석모델의 경우에도 해석방법에 따라서 취약도 곡선의 형태가 다름을 알 수 있었다.

  • PDF

Seismic Resistance of Concrete-filled U-shaped Steel Beam-to-RC Column Connections (콘크리트채움 U형 강재보 - 콘크리트 기둥 접합부의 내진성능)

  • Hwang, Hyeon-Jong;Park, Hong-Gun;Lee, Cheol-Ho;Park, Chang-Hee;Lee, Chang-Nam;Kim, Hyoung-Seop;Kim, Sung-Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.1
    • /
    • pp.83-97
    • /
    • 2011
  • In this study, the seismic details of a concrete-encased, U-shaped steel beam-to-RC column connection were developed. Three specimens of the beam-to-column connection were tested under cyclic loading to evaluate the seismic performance of the connection. The test parameters were the beam depth and the column section shape. The depths of the composite beams were 610 and 710 mm, including the slab depth. For the RC columns, a square section and a circular section were used. Special details using diagonal re-bars and exterior diaphragm plates were used to strengthen the connections with the rectangular and circular columns, respectively. The test results showed that the specimens exhibited good strength, deformation, and energy dissipation capacities. The deformation capacity exceeded 4% interstory drift angle, which is the requirement for the Special Moment Frame.

Hysteretic Behavior of Diagonally Reinforced Concrete Coupling Beams According to Aspect Ratio and Volume Fraction of Steel Fiber Under Cyclic Loading (반복하중을 받는 대각보강된 철근콘크리트 연결보의 강섬유 형상비와 혼입률에 따른 이력거동)

  • Choi, Ji-Yoon;Son, Dong-Hee;Bae, Baek-Il;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.84-91
    • /
    • 2022
  • In this study, an experimental study was conducted to analyze the hysteresis behavior according to the steel fiber aspect ratio and volume fraction of diagonally reinforced concrete coupling beams under to cyclic loading. The aspect ratio and volume fraction of the steel fibers were set as the main variables, and 4 specimens were fabricated in which the amount of transverse reinforcement of the coupling beam suggested in the domestic building structural standard was relaxed by about 53%. In the experiment, cyclic loading experiments were performed in the displacement control method in accordance with ACI 374.2R-13, and as a result of the experiment, it was found that all specimens containing steel fibers exceeded the nominal shear strength suggested by the current structural standards. As the aspect ratio of the steel fibers increased, the steel fibers prevented the buckling of the diagonal reinforcement, and the bridging effect of the steel fibers held the crack surface of the concrete. The shear strength, stiffness reduction and energy dissipation capacity of the specimens containing steel fibers were superior to those of the Vf0 specimens without steel fibers. Therefore, it is judged that the steel fiber reinforced concrete can relieve the details of the transverse reinforced.