• Title/Summary/Keyword: 달 탐사

Search Result 251, Processing Time 0.024 seconds

Correction of Lunar Irradiation Effect and Change Detection Using Suomi-NPP Data (VIIRS DNB 영상의 달빛 영향 보정 및 변화 탐지)

  • Lee, Boram;Lee, Yoon-Kyung;Kim, Donghan;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.265-278
    • /
    • 2019
  • Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) data help to enable rapid emergency responses through detection of the artificial and natural disasters occurring at night. The DNB data without correction of lunar irradiance effect distributed by Korea Ocean Science Center (KOSC) has advantage for rapid change detection because of direct receiving. In this study, radiance differences according to the phase of the moon was analyzed for urban and mountain areas in Korean Peninsula using the DNB data directly receiving to KOSC. Lunar irradiance correction algorithm was proposed for the change detection. Relative correction was performed by regression analysis between the selected pixels considering the land cover classification in the reference DNB image during the new moon and the input DNB image. As a result of daily difference image analysis, the brightness value change in urban area and mountain area was ${\pm}30$ radiance and below ${\pm}1$ radiance respectively. The object based change detection was performed after the extraction of the main object of interest based on the average image of time series data in order to reduce the matching and geometric error between DNB images. The changes in brightness occurring in mountainous areas were effectively detected after the calibration of lunar irradiance effect, and it showed that the developed technology could be used for real time change detection.

Precise Measurements of the Along-track Surface Deformation Related to the 2016 Kumamoto Earthquakes via Ionospheric Correction of Multiple-Aperture SAR Interferograms (다중개구간섭영상의 이온층 보정을 통한 2016 구마모토 지진의 비행방향 지표변위 정밀 관측)

  • Baek, Won-Kyung;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_4
    • /
    • pp.1489-1501
    • /
    • 2018
  • In 2016 Kumamoto, Japan, the foreshocks of $M_j$ 6.5 and 6.4, mainshock of $M_j$ 7.3 besides more than 2,000 aftershocks occurred in succession. Large surface deformation occurred due to this serial earthquakes and three-dimensional measurements of the deformation have been presented for the study of fault structures (Baek, 2017). The 3d measurements retrieved from two ascending pairs (20160211_20160602, 20151119_20160616) and a descending pair (20160307_20160418) acquired from ALOS PALSAR-2. In order to avoid mixing ionospheric error components on along-track surface deformation, the descending multiple-aperture interferogram, which do not contain the deformation of aftershocks after 20160418, was utilized. For these reason, there was a temporal discrepancy of about 2 months in extracting the north-south deformation. In this study, we applied a directional filter based ionospheric correction to ascending multiple-aperture interferograms, in order to reduce this discrepancy and understand more accurate fault movements. As a result of the ionospheric correction, an additional displacement signal was observed nearby fault lines. The root-mean-squared errors compared to GPS were about 9.87, 8.13 cm respectively. These results show improvements of 4.8 and 6.4 times after ionospheric correction. We expected that these along-track measurements would be used to decide more accurate movements of faults related to the 2016 Kumamoto Earthquake.

Fifty Years of Scientific Ocean Drilling (1968-2018): Achievements and Future Direction of K-IODP (해양 과학시추 50년 (1968-2018): 한국의 성과 및 미래 방향)

  • KIM, GIL YOUNG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.1
    • /
    • pp.30-48
    • /
    • 2019
  • The year 2018 is the $50^{th}$ anniversary of scientific ocean drilling. Nevertheless, we know more about the surface of the moon than the Earth's ocean floor. In other words, there are still no much informations about the Earth interior. Much of what we do know has come from the scientific ocean drilling, providing the systematic collection of core samples from the deep seabed. This revolutionary process began 50 years ago, when the drilling vessel Glomar Challenger sailed into the Gulf of Mexico on August 11, 1968 on the first expedition of the federally funded Deep Sea Drilling Project (DSDP). DSDP followed successively by Ocean Drilling Program (ODP), Integrated Ocean Drilling Program (old IODP), and International Ocean Discovery Program (new IODP). Concerning on the results of scientific ocean drilling, there are two technological innovations and various scientific research results. The one is a dynamic positioning system, enables the drilling vessel to stay fixed in place while drilling and recovering cores in the deep water. Another is the finding of re-entry cone to replace drill bit during the drilling. In addition to technological innovation, there are important scientific results such as confirmation of plate tectonics, reconstruction of earth's history, and finding of life within sediments. New IODP has begun in October, 2013 and will continue till 2023. IODP member countries are preparing for the IODP science plan beyond 2023 and future 50 years of scientific ocean drilling. We as IODP member also need to participate in keeping with the international trend.

Assessment of the Coupled Electric-Thermal Numerical Model for Microwave Sintering of KLS-1 (한국형 인공월면토(KLS-1) 마이크로파 소결을 위한 전기장-열 연계해석 모델 평가)

  • Jin, Hyunwoo;Go, Gyu-Hyun;Lee, Jangguen;Shin, Hyu-Soung;Kim, Young-Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.5
    • /
    • pp.35-46
    • /
    • 2022
  • The in-situ resource utilization (ISRU) for sustainable lunar surface and deep space explorations has recently gained attention. Also, research on the development of construction material preparation technology using lunar regolith is in progress. Microwave sintering technology for construction material preparation does not require a binder and is energy efficient. This study applies microwave sintering technology to KLS-1, a Korean lunar simulant. It is crucial to secure the homogeneity to produce a sintered specimen for construction material. Therefore, understanding the interactions between microwaves, cavities, and raw materials is required. Using a numerical model in terms of efficient assessment of several cases and establishment of equipment operating conditions is a very efficient approach. Therefore, this study also proposes and verifies a coupled electric-thermal numerical model through cross-validation and comparison with experimental results. The numerical model proposed in this study will be used to present an efficient method for producing construction material using microwave sintering technology.

Assessment of soil moisture-vegetation-carbon flux relationship for agricultural drought using optical multispectral sensor (다중분광광학센서를 활용한 농업가뭄의 토양수분-식생-이산화탄소 플럭스 관계 분석)

  • Sur, Chanyang;Nam, Won-Hob
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.721-728
    • /
    • 2023
  • Agricultural drought is triggered by a depletion of moisture content in the soil, which hinders photosynthesis and thus increases carbon dioxide (CO2) concentrations in the atmosphere. The aim of this study is to analyze the relationship between soil moisture (SM) and vegetation activity toward quantifying CO2 concentration in the atmosphere. To this end, the MODerate resolution imaging spectroradiometer (MODIS), an optical multispectral sensor, was used to evaluate two regions in South Korea for validation. Vegetation activity was analyzed through MOD13A1 vegetation indices products, and MODIS gross primary productivity (GPP) product was used to calculate the CO2 flux based on its relationship with respiration. In the case of SM, it was calculated through the method of applying apparent thermal inertia (ATI) in combination with land surface temperature and albedo. To validate the SM and CO2 flux, flux tower data was used which are the observed measurement values for the extreme drought period of 2014 and 2015 in South Korea. These two variables were analyzed for temporal variation on flux tower data as daily time scale, and the relationship with vegetation index (VI) was synthesized and analyzed on a monthly scale. The highest correlation between SM and VI (correlation coefficient (r) = 0.82) was observed at a time lag of one month, and that between VI and CO2 (r = 0.81) at half month. This regional study suggests a potential capability of MODIS-based SM, VI, and CO2 flux, which can be applied to an assessment of the global view of the agricultural drought by using available satellite remote sensing products.

Acoustic Stratigraphy and Sedimentary Processes in the KONOD-1 Area between the Clarion and Clipperton Fracture Zones, Northeastern Equatorial Pacific (북동태펑양 크라리온-크리퍼톤 균열대 사이 한국 망간노듈개발지역-1의 탄성파층서 및 퇴적작용)

  • Jeong, Kap-Sik;Han, Sang-Joon;Kim, Seong-Ryul
    • 한국해양학회지
    • /
    • v.23 no.1
    • /
    • pp.24-40
    • /
    • 1988
  • In the Korea Ocean Nodule Development (KONOD)-1 area between the Clarion and Clipperton fracture zones of the northeastern equatorial Pacific, the pelagic sediment layer can be divided into two or three units on air-gun seismic profile. The acoustic units can be also correlated with those in the DSDP site 163 core. The topmost unit (unit I) is acoustically transparent and consists of zeolitic clay and radiolarian ooze of late Oligocene to middle Eocene age. Unit IIA is well-stratified and transparent in the lower part. consisting of the radiolarian ooze intercalated with chert beds and zeolitic clay of early Eocene to Paleocene age. Unit IIB is stratified with layers of silicified and compacted flinty-cherty nannofossil chalk (late Cretaceous) on top of the acoustic basement. Units I and IIA form the Line Islands Formation that overlies an unnamed formation of unit lIB. The entire layers and the unit I layer propressively thin northward, except near the Line Islands Ridge. The distribution of sediment layer has been controlled by the equatorial Cenozoic CCD and the northward spreading of the Pacific plate. The change of CCD corresponding to the subsidence and migration of the plate has determined the sediment composition of the DSDP 163 core passed across the equator of high sedimentation suite. The late Cretaceous sedimentary layer (unit IIB) in the 163 core was formed above the CCD south of the equator. The unit IIA resulted from rapid subsidence of the Pacific plate below the CCD in the Paleocene. The unit IIA is seen only in the west of 149 W. Both the units IIA and I were probably formed during the Pacific plate passing and after leaving the equatorial region respectively since early Eocene. In the south of the KONOD-l area, the unit I was redistributed by bottom current, a branch of the Antarctic Bottom Water flowing eastward guided by the Clipperton fracture zone. The activities of bottom currents were prolonged for a long geological time. Turbidite layers occur more than 350 km from the Hawaiian Ridge to near the Clarion fracture zone. They originated directly from the Hawaiian Ridge, filling the topographic lows.

  • PDF

The Liability for Space Activity of Launching State of Space Object and Improvement of Korea's Space Policy (우주물체 발사국의 우주활동에 대한 책임과 우리나라 우주정책의 개선방향)

  • Lee, Kang-Bin
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.28 no.2
    • /
    • pp.295-347
    • /
    • 2013
  • Korea launched the science satellite by the first launch vehicle Naro-ho(KSLV-1) at the Naro Space Center located at Oinarodo, Cohenggun Jellanamdo in August, 2009 and October, 2010. However, the first and second launch failed. At last, on January 30, 2013 the third launch of the launch vehicle Naro-ho has successfully launched and the Naro science satellite penetrated into the space orbit. Owing to the succeed of the launch of Naro-ho, Korea joined the space club by the eleventh turn following the United States, Russia, Japan and China. The United Nations adopted the Outer Space Treaty of 1967, the Rescue Agreement of 1968, the Liability Convention of 1972, the Regislation Convention of 1976, and Moon Agreement of 1979. Korea ratified the above space-related treaties except the Moon Agreement. Such space-related treaties regulate the international liability for the space activity by the launching state of the space object. Especially the Outer Space Treaty regulates the principle concerning the state's liability for the space activity. Each State Party to the Treaty that launches or procures the launching of an object into outer space is internationally liable for damage to another State Party or to its natural or judicial persons by such object or its component parts on the earth, in air space or in outer space. Under the Liability Convention, a launching state shall be absolutely liable to pay compensation for damage caused by its space object on the surface of the earth or to aircraft in flight. The major nations of the world made national legislations to observe the above space-related treaties, and to promote the space development, and to regulate the space activity. In Korea, the United States, Russia and Japan, the national space-related legislation regulates the government's liability of the launching state of the space object. The national space-related legislations of the major nations are as follows : the Outer Space Development Promotion Act and Outer Space Damage Compensation Act of Korea, the National Aeronautic and Space Act and Commercial Space Launch Act of the United States, the Law on Space Activity of Russia, and the Law concerning Japan Aerospace Exploration Agency and Space Basic Act of Japan. In order to implement the government's liability of the launching state of space object under space-related treaties and national legislations, and to establish the standing as a strong space nation, Korea shall improve the space-related policy, laws and system as follows : Firstly, the legal system relating to the space development and the space activity shall be maintained. For this matter, the legal arrangement and maintenance shall be made to implement the government's policy and regulation relating to the space development and space activity. Also the legal system shall be maintained in accordance with the elements for consideration when enacting the national legislation relevant to the peaceful exploration and use of outer space adopted by UN COPUOS. Secondly, the liability system for the space damage shall be improved. For this matter, the articles relating to the liability for the damage and the right of claiming compensation for the expense already paid for the damage in case of the joint launch and consigned launch shall be regulated newly. Thirdly, the preservation policy for the space environment shall be established. For this matter, the consideration and preservation policy of the environment in the space development and use shall be established. Also the rule to mitigate the space debris shall be adopted. Fourthly, the international cooperation relating to the space activity shall be promoted. For this matter, the international cooperation obligation of the nation in the exploration and use of outer space shall be observed. Also through the international space-related cooperation, Korea shall secure the capacity of the space development and enter into the space advanced nation.

  • PDF

The Study of Two-dimensional Chemical Distribution about Soil using Laser Spectroscopy (레이저 분광법을 활용한 토양 2차원 화학적 분포도 검출 연구)

  • Yang, Jun-Ho;Yoh, Jai-Ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.6
    • /
    • pp.523-530
    • /
    • 2017
  • Laser-Induced Breakdown Spectroscopy (LIBS) which a plasma is irradiated at a specific wavelength depending on the material when a high-energy laser is irradiated, and a Raman spectroscopy which measures rotation and vibration in molecules as light-scattering phenomenon occurs, are attracting attention as a space exploration technology because of the advantages of high accuracy and real-time analysis, and the ability to perform long-range detection. In this study, the tendency of the laser spectrum according to the change of the soil component was analyzed by laser spectroscopy and the two - dimensional chemical distribution was conducted based on the trend of laser spectrum. We have also established the environment of Mars (4-7 torr) and lunar atmosphere (<1 torr) in experimental setup, to prove that it is possible to measure by difference of soil chemical composition using LIBS and Raman spectroscopy even in artificial space environment.

VSOP-2 운용을 위한 37-38GHz 대역 관련 ITU-R WP7B 회의 결과

  • Chung, Hyun-Soo;Oh, Se-Jin;Je, Do-Heung;Roh, Duk-Gyoo;Sohn, Bong-Won;Lee, Sang-Sung;Kim, Hyo-Ryoung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.88.2-88.2
    • /
    • 2010
  • 세계전파통신회의 (WRC; World Radiocommunication Conference)회의는 국제전기통신연합 (ITU)에서 발행하는 국제 전파법과 관련된 전파규약을 갱신하거나 새로운 법 제정을 위해, 3-4년 간격으로 개최되는 전파통신 관련 회의라고 할 수 있다. WRC-12회의는 2012년 1월 23일 -2월 17일에 걸쳐 스위스 제네바에서 개최되며, 동회의의 원활한 진행을 위하여, 25개의 WRC 의제들에 대한 ITU 산하의 연구반 (ITU-R Study Group) 연구결과들을 기술보고서로 확정하기 위한 회의(CPM-11, Conference Preparatory Meeting)가 2011년 2월 14일-25일에 걸쳐 스위스 제네바에서 역시 개최된다. 이에 한국천문연구원에서는 KVN과 일본국립천문대(ASTRO-G)간의 원활한 국제 공동 VLBI연구를 위해, WRC회의에서 최종적인 규정개정을 함에 있어서 필요한 CPM기술문서작성과 관련된 ITU-R 연구반 회의에서 주도적인 역할을 수행하고 있다. 따라서 본 발표에서는 2010년 6월 10-18일에 걸쳐 스위스 제네바에서 진행되었던 ITU-R WP7B, 7D 회의에서, 우리나라가 전파천문업무와 관련된 기술문서 개정사항에 대하여 제출하였던 제안결과 및 회의 주요 결과를 소개하고, 전파천문업무 보호 및 22 GHz 대역 달탐사, 38 GHz 대역 Space-VLBI운용대역과 관련된 WRC-12 의제 1.6, 1.11, 1.12 등에 대한 향후 대응방안을 알아보고자 한다.

  • PDF

275 GHz 이상 전파천문대역과 관련된 ITU-R WP7D 회의 결과

  • Chang, Hyun-Soo;Oh, Se-Jin;Je, Do-Heung;Roh, Duk-Gyoo;Sohn, Bong-Won;Lee, Sang-Sung;Kim, Huo-Ryoung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.87.2-87.2
    • /
    • 2010
  • 세계전파통신회의 (WRC; World Radiocommunication Conference)회의는 국제전기통신연합 (ITU)에서 발행하는 국제 전파법과 관련된 전파규약을 갱신하거나 새로운 법 제정을 위해, 3-4년 간격으로 개최되는 전파통신 관련 회의라고 할 수 있다. WRC-12회의는 2012년 1월 23일 -2월 17일에 걸쳐 스위스 제네바에서 개최되며, 동회의의 원활한 진행을 위하여, 25개의 WRC 의제들에 대한 ITU 산하의 연구반 (ITU-R Study Group) 연구결과들을 기술보고서로 확정하기 위한 회의(CPM-11, Conference Preparatory Meeting)가 2011년 2월 14일 -25일에 걸쳐 스위스 제네바에서 역시 개최된다. 이에 한국천문연구원에서는 275 GHz 이상 대역에서의 전파천문업무의 원활한 운용을 위해, WRC회의에서 최종적인 규정개정을 함에 있어서 필요한 CPM기술문서작성과 관련된 ITU-R 연구반 회의에서 주도적인 역할을 수행하고 있다. 따라서 본 발표에서는 2010년 6월 10-18일에 걸쳐 스위스 제네바에서 진행되었던 ITU-R WP7B, 7D 회의에서, 우리나라가 전파천문업무와 관련된 기술문서 개정사항에 대하여 제출하였던 제안결과 및 회의 주요 결과를 소개하고, 전파천문업무 보호 및 22 GHz 대역 달탐사, 38 GHz 대역 Space-VLBI운용대역과 관련된 WRC-12 의제 1.6, 1.11, 1.12 등에 대한 향후 대응방안을 알아보고자 한다.

  • PDF