• Title/Summary/Keyword: 달 과학 탑재체

Search Result 16, Processing Time 0.016 seconds

Study on Downlink Capacity based on the Visibility Analysis between KPLO and KDSA/DSN (시험용 달 궤도선과 KDSA 및 DSN 간 가시성 분석을 통한 다운링크 용량 연구)

  • Kim, Changkyoon;Jeon, Moon-Jin;Lee, Sang-Rok;Lim, Seong-Bin
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.86-91
    • /
    • 2016
  • KARI(Korea Aerospace Research Institute) has been developing the KPLO(Korea Pathfinder Lunar Orbiter) for Korean first lunar exploration, and analysing various subjects for the mission success. Especially the performance of the communication is one of important factors, because massive scientific and technical data acquired by multiple payloads might be transferred to ground stations on the Earth. In this paper, we explained the study on the 1-day average downlink capacity based on the visibility analysis between ground stations and KPLO, and described its results.

MIRIS 냉각 설계 검증을 위한 열해석 연구

  • Lee, Deok-Haeng;Mun, Bong-Gon;Park, Yeong-Sik;Lee, Dae-Hui;Jeong, Ung-Seop;Lee, Chang-Hui;Nam, Uk-Won;Park, Seong-Jun;Pyo, Jeong-Hyeon;Cha, Sang-Mok;Ga, Neung-Hyeon;Park, Jang-Hyeon;Seon, Gwang-Il;Lee, Seung-U;Park, Jong-O;Lee, Hyeong-Mok;Matsumoto, Toshio;Han, Won-Yong
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.23.2-23.2
    • /
    • 2011
  • 과학기술위성3호의 주탑재체 Multi-purpose Infra-Red Imaging System(MIRIS)는 한국천문연구원이 개발하고 있는 소형 적외선 우주망원경이다. MIRIS는 적외선 센서의 열잡음을 최소화시키기 위하여 망원경의 온도가 허용범위를 넘지 않도록 설계되었다. 특히 3K의 심우주를 향해 MIRIS의 복사열을 자연 방출하는 Passive cooling은 임무 성공에 영향을 미치는 매우 중요한 과정이다. 이를 검증하고자 NX 7.0(Space Systems Thermal, TMG 탑재)을 사용하여 열 해석을 수행하였다. 각 부품별로 물성과 열광학 특성을 적용하여 전도 및 복사를 통한 열전달 과정을 계산하였고, MIRIS의 궤도 특성을 고려하여 정상상태에서의 망원경 온도를 얻었다. 그 결과 Passive cooling을 통해 MIRIS 망원경이 허용범위 아래로 냉각되는 것을 확인하였다.

  • PDF

A Study on the Analysis of Visibility between a Lunar Orbiter and Ground Stations for Trans-Lunar Trajectory and Mission Orbit (지구-달 전이궤적 및 임무 궤도에서 궤도선과 지상국의 가시성 분석에 관한 연구)

  • Choi, Su-Jin;Kim, In-Kyu;Moon, Sang-Man;Kim, Changkyoon;Rew, Dong-young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.3
    • /
    • pp.218-227
    • /
    • 2016
  • Korean government plans to launch a lunar orbiter and a lander to the Moon by 2020. Before launch these two proves, an experimental lunar orbiter will be launched by 2018 to obtain key space technologies for the lunar exploration. Several payloads equipped in experimental lunar orbiter will monitor the surface of the Moon and will gather science data. Lunar orbiter sends telemetry and receives tele-command from ground using S-band while science data is sent to ground stations using X-band when the visibility is available. Korean deep space network will be mainly used for S and X-band communication with lunar orbiter. Deep Space Network or Universal Space Network can also be used for the S-band during trans-lunar phase when korean deep space network is not available and will be used for the S-band in normal mission orbit as a backup. This paper analyzes a visibility condition based on the combination of various ground antennas and its mask angles according to mission scenario to predict the number of contacts per day and to build an operational scenario for the lunar orbiter.

EXPOSURE TIME ANALYSIS FOR FAR-ULTRAVIOLET IMAGING SPECTROGRAPH ALL-SKY SURVEY MISSION (과학위성 1호 탑재체 원자회선분광기 전천탐사 노출시간 분석)

  • Park, J.-H.;Seon, K.-I.;Ryu, K.-S.;Yuk, I. S.;Jin, H.;Lee, D.-H.;Oh, S.-H;Seon, J.;Nam, U.-W.;Han, W.;Lee, W.-B.;Min, K.-W.;Edelstein, J.;Korpela, E. J.
    • Journal of Astronomy and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.209-218
    • /
    • 2001
  • Global exposure time distribution through all-sky survey, one of main science missions of KAISTSAT-1, has been simulated. Exposure time distribution has its minimum on the celestial equator and increases with moving to polar regions according to the present mission operation scenario. SAA (South Atlantic Anomaly) and the moon can make further decreases of exposure time around the celestial equator Effects of SAA on all-sky survey exposure time can be compensated with a simple observational scheduling, orbit exchange between orbits allocated to all-sky survey passing through the SAA region and ones allocated to upper atmosphere observations not affected by SAA. It, however, seems that present exposure time distribution is not adequate for the concrete study of the evolution of interstellar medium. A scheme for active time allocation is needed for redistribution of exposure times weighted around the celestial poles, and additional studies on the advanced mission operation and the observational scheduling are also needed.

  • PDF

Development of a Prototype Mass Spectrometer (질량 분석기의 원형 모델 개발)

  • Jingeun Rhee;Nam-Seok Lee;Sung Won Kang;Seontae Kim;Kyu-Ha Jang;Yu Yi;Ik-Seon Hong;Cheong Rim Choi;Kyoung Wook Min;Jongil Jung
    • Journal of Space Technology and Applications
    • /
    • v.3 no.1
    • /
    • pp.86-99
    • /
    • 2023
  • The mass spectrometer, being an essential scientific instrument for uncovering the origin of the solar system and life, has been used since the early 1970s on board spacecraft to obtain information of neutral and ionized elements in the atmosphere and surface of the moon, planets, asteroids, and comets. According to the 4th Basic Plan for the Promotion of Space Development (2023-2027), Korea plans to conduct lunar landing in 2032 and Mars landing in 2045 as the core goals of the plan and focuses on developing the technologies required for unmanned robotic exploration missions. In this regard, it is crucial to develop the technology of a mass spectrometer, which is the most fundamental payload for space exploration for maximized scientific achievements, however never tried before in any domestic space missions. We describe in this paper the principle of a domestically developed quadrupole mass spectrometer, its prototype model, and the test results of its performance. We conclude this paper with intended future improvements.

Analysis of effectiveness of solar system internet to deep space exploration (태양계 인터넷이 심우주 탐사에 미치는 영향 분석)

  • Koo, Cheolhea;Kim, Changkyun;Rew, Dongyoung;Choi, Gihyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.3
    • /
    • pp.240-246
    • /
    • 2016
  • The hottest news and achievements of space science and research in recent years may be NASA Curiosity rover's exploration (2013) of Mars, China Chang'e 3's exploration (2013) of Moon, ESA Rosetta's exploration (2014) of Comet 67P/Churyumov-Gerasimenko, and NASA New Horizons' exploration (2015) of Pluto, which are very astonishing achievement since such a deep space journey was possible with current technology. In contrast the wonderful cruise and navigation technologies evolution of explorer in deep space, there are no remarkable changes in deep space data communication, it is still in conservative area, of which much changes are reluctantly accepted so far. But there are some movements of deep space exploration in order to allow ground brilliant technologies to deep space. One of those experiments is internet, whose main topic of this paper. In this paper, we will present the analysis of effectiveness of solar system internet to deep space exploration.