• Title/Summary/Keyword: 단층활동

Search Result 176, Processing Time 0.033 seconds

일본의 활단층과 효고현 남부지진의 지진단층 고찰

  • 경재복
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 1995.03a
    • /
    • pp.101-107
    • /
    • 1995
  • 일본은 Pacific plate, Philippine plate, Eurasian plate 및 American plate 가 서로 접해 있는 판 경계부에 위치하며 내륙에는 많은 활단층(active fault)이 분포하고 있다. 이러한 활단층은 제4기 이후 단층 활동을 반복하면서 엄청난 재해를 동반하는 대지진의 발생과 함께 지표면에 지진 단층(earthquake fault)의 출현을 초래했다. 따라서 활단층 연구는 지진 예지, 지진 위험도 연구에 매우 중요한 분야가 되어왔다. (중략)

  • PDF

Reactivated Timings of Inje Fault since the Mesozoic Era (인제단층의 중생대 이 후 재활동 연대)

  • Khulganakhuu, Chuluunbaatar;Song, Yungoo;Chung, Donghoon;Park, Changyun;Choi, Sung-Ja;Kang, Il-Mo;Yi, Keewook
    • Economic and Environmental Geology
    • /
    • v.48 no.1
    • /
    • pp.41-49
    • /
    • 2015
  • Recently developed illite-age-analysis(IAA) approach was applied to determine the fault-reactivated events for the Inje fault that cut through Precambrian biotite granitic gneiss with NNE-SSW trend in the middle of Korean peninsula. Three distinct fault-reactivated events of shallow crustal regime were recognized using the combined approach of optimized illite-polytype quantification and K-Ar age-dating of clay fractions separated from 4 fault clay samples: $87.0{\pm}0.12Ma$, $65.5{\pm}0.05$ and $66.6{\pm}1.38Ma$, $45.6{\pm}0.15Ma$, respectively. As well, $2M_1$ illite ages of 193~196 Ma and $254.3{\pm}6.96Ma$ were discernible, which may be related to the fault-activated time in the relatively deep crust. The study results suggest that the Inje fault would be firstly formed at $254.3^{\circ}$ ${\ae}6.96Ma$ and sporadically reactivated in shallow regime since about 87 Ma. These reactivation events in shallow regime might be due to the Bulguksa orogeny that would be strongly influenced in Korean peninsula at that time.

Quaternary Tectonic Activities and Seismic Stability of Suryum Fault and Yupchon Fault, SE Korea (수렴단층과 읍천단층의 제4기 활동 및 지진 안정성)

  • Hwang, Sangill;Shin, Jaeryul;Yoon, Soon-Ock
    • Journal of the Korean association of regional geographers
    • /
    • v.18 no.4
    • /
    • pp.351-363
    • /
    • 2012
  • Although the Korean peninsula has been considered as a largely aseismic region compared with the surrounding high seismic areas such as North China and Japan, there are more than thirty Quaternary faults reported so far, which are mostly centered in the southeastern peninsula. Structural studies of active faults exposed in Yangnam-myeon of Gyeongju, SE Korea are largely interpreted to post date the late Quaternary, suggesting that the NE-trending reverse faults may result from the active stress regime in the peninsula. The prevailing present-day E-W $S_{Hmax}$ orientations in the peninsula are consistent with the nature of plate forcing stemming from the convergence between the Indo-Australian and Eurasian plates. It is clear that the Quaternary faults have been reactivated, although resolving more elaborate time intervals responsible for a future rupture remains a significant challenge. This study contributes to better assess many of potential seismic hazards in the study area, in particular, in terms of seismic stability for foundation of nuclear power plant.

  • PDF

The Shape Preferred Orientation (SPO) Analysis in Estimation of Fault Activity Study (단층 활동 추적 연구에서의 Shape Preferred Orientation (SPO) 분석법)

  • Ho Sim;Yungoo Song;Changyun Park;Jaewon Seo
    • Economic and Environmental Geology
    • /
    • v.56 no.3
    • /
    • pp.293-300
    • /
    • 2023
  • The Shape Preferred Orientation (SPO) method has been used to analyze the orientation of fault motion, which is utilized as basic data for fault kinematics studies. The rigid grains, which as quartz, feldspar, and rock fragments, in the fault gouge are arranged in the P-shear direction through rigid body rotation by a given shear stress. Using this characteristic, the fault motion can be estimated from the SPO inversely. Recently, a method for securing precision and reliability by measuring 3D-SPO using X-ray CT images and examining the shape of a large number of particles in a short time has been developed. As a result, the SPO method analyzes the orientation of thousands to tens of thousands of particles at high speed, suggests the direction of fault motion, and provides easy accessibility and reliable data. In addition, the shape information and orientation distribution data of particles, which are by-products obtained in the SPO analysis process, are expected to be used as basic data for conducting various studies such as the local deformation of fault rocks and the fault generation mechanism.

A Statistical Analysis of the Seismicity of the Yangsan Fault System (양산단층계 지진활동의 통계적 분석)

  • 이기화;이전희;경재복
    • The Journal of Engineering Geology
    • /
    • v.8 no.2
    • /
    • pp.99-114
    • /
    • 1998
  • The Yangsan fault system of Kyungsang Basin in the southeastern part of Korean peninsula is one of the most important structures in the peninsula. A number of strong earthquakes occurred in the vicinity of the fault. It was suggested that this fault can be divided into three segments: northern, central and southern ones. Earthquake data around the Yangsan fault were classified into two groups as incomplete and complete ones; the former is the data before the Choseon Dynasty and the latter is those since the dynasty. The maximum likelihood method was applied to compute seismicity parameters such as earthquake occurrence rates, b-values of frequency-magnitude relation and maximum possible magnitudes for each segment and the entire fault. These parameters show considerably different values from segment to segment. The b-value for the entire fault turned out to be 0.85 and maximum possible magnitudes for the northern, central and southern segments are 5.2, 6.8 and 6.0, respectively. The mean return periods for the maximum possible magnitudes for each segments are greater than 1000 years. In addition, according to the analysis of the frequency-magnitude relation, the occurrence pattern of earthquakes around the Yangsan fault show more similarity to the characteristic earthquake model than the Gutenberg-Richter model. The data for each segments are, however, too scarce to obtain any physically meaningful results.

  • PDF

Fracture Characteristics and Segmentation of Yangsan Fault around Mt. Namsan, Gyeongju City, Korea (경주 남산 일대의 단열구조 특성과 양산단층의 분절)

  • Kim, Heon-Joo;Chang, Tae-Woo
    • The Journal of Engineering Geology
    • /
    • v.19 no.1
    • /
    • pp.51-61
    • /
    • 2009
  • Fractures and segmentation in association with the activities of the Yangsan fault are studied around Mt. Namsan, Gyengju city in the southeastern part of Korea. It is believed that the higher values of joint density and fractal dimension with the approach of the center of the Yangsan fault mean intense fracturing due to the fault activity. The boundary between fault damage zone and host rock is inferred to be placed at about 2.7 km from the center of the Yangsan fault where the values of joint density and fractal dimension abruptly decrease and the orientations of joint are also much dispersed. The small faults within the damage zone of the Yangsan fault are definitely divided into right-lateral and left-lateral strike-slip faults. The former is considered to be formed during the right-lateral movement of the Yangsan fault and the latter during the left-lateral movement. The Yangsan fault is segmented in the study area with obvious evidences as follows: (1) the difference of fault strike between northern and southern segments, (2) The geometry of contractional imbricate fans and syncline plunging $9^{\circ}$, $S85^{\circ}E$ at the end of northern segment, and (3) anticline plunging $28^{\circ}$, $N4^{\circ}W$ at the end of southern segment.

Formation Processes of Fault Gouges and their K-Ar Ages along the Dongnae Fault (동래단층 지역 단층비지의 생성과정과 K-Ar 연령)

  • 장태우;추창오
    • The Journal of Engineering Geology
    • /
    • v.8 no.2
    • /
    • pp.175-188
    • /
    • 1998
  • This paper describes the internal structures and K-Ar ages of fault gouges collected from the Dongnae fault zone. This fault zone is internally zoned and occurs in the multiple fault cores. A fault core consists of thin gouge and narrow cataclastic zones that are bounded by a much thicker damage zone. Intensity of deformation and alteration increases from damage zone through cataclastic zone to gouge zone. It is thought that cataclasis of brittle deformation was the dominant strain-accomodation mechanism in the early stage of deformation to form the gouge zone and that crushed materials in the regions of maximum localization of fault slip subsequently moved by cataclastic flow. Deformation mechanism drastically changed from brittle processes to fluid-assisted flow along the gouge zone as the high porosity and permeability of pulverzied materials during faulting facilitated the influx of the hydrothermal fluids. Subsequently, the fluids reacted with gouge materials to form clay minerals. Fracturing and alteration could have repeatedly taken place in the gouge zone by elevated fluid pressures generated from the reduction of pore volume due to the formation of clay minerals and precipitation of other materials. XRD analysis revealed that the most common clay minerals of the gouge zones are illite and smectite with minor zeolite and kaolinite. Most of illites are composed of 1Md polytype, indicating the products of hydrothermal alteration. The major activities of the Dongnae fault can be divided into two periods based upon K-Ar age data of the fault gouges : 51.4∼57.5Ma and 40.3∼43.6Ma. Judging from the enviromental condition of clay mineral formation, it is inferred that the hydrothermal alteration of older period occured at higher temperature than that of younger period.

  • PDF

Paleoseismological Study on the Mid-northern Part of Ulsan Fault by Trench Method (트렌치 조사에 의한 울산 단층 중북부의 고지진학적 연구)

  • 경제복
    • The Journal of Engineering Geology
    • /
    • v.7 no.1
    • /
    • pp.81-90
    • /
    • 1997
  • The Korean historical 1iteratures describe that great eaathquakes with destructive damages occurred mainly in Kyongju-Ulsan areas during the period of 1 to 8 century and 16 to 17 century. It seems that the Ulsan fault system shows a little curved ttend with N-S strike in the southern part and diverges into three directions from the mid-northern lart of the fault. The dominant trends of the lineaments are NNE-SSW, NE-SW and NS directions. Trench excavation in the mid-northern part of the Ulsan fault shows thrust facies cutting slope deposit containing a compacted laminar structure whose origin may due to severe cryogenic activities of the last cold period(ahout 25OOO B.P.). Detailed observation of the facies gives some evidences related to two earthquake episodes of thrust components along the Ulsan fault system. Fault outcrop and trench study suggest that Ulsan fault seems to he one of the active fault which has reworked several times even in the late Quaternary.

  • PDF