• Title/Summary/Keyword: 단층계

Search Result 232, Processing Time 0.028 seconds

Characterization of Fault Kinematics based on Paleoseismic Data in the Malbang area in the Central Part of the Ulsan Fault Zone (고지진학적 자료를 이용한 울산단층대 중부 말방지역에서의 단층운동 특성 해석)

  • Park, Kiwoong;Prasanajit, Naik Sambit;Gwon, Ohsang;Shin, Hyeon-Cho;Kim, Young-Seog
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.151-164
    • /
    • 2022
  • According to the records of historical and instrumental earthquakes, the southeastern part of the Korean Peninsula is considered the highest seismic activity area. Owing to recent reports of numerous Quaternary faults along the Yangsan and Ulsan fault zones, paleoseismological studies are being actively conducted in these areas. The study area is located in the central part of the Ulsan fault zone, where the largest number of active faults have been reported. Based on lineament and geomorphic analysis using LiDAR images and aerial photographs, fault-related landforms showing topographic relief were observed and a trench survey was conducted. The trench length 20 m, width 5 m, depth 5 m is located approximately 300 m away to the northeast from the previously reported Malbang fault. From the trench section, we interpreted the geometric and kinematic characteristics of the fault based on the deformed features of the Quaternary sedimentary layers. The attitude of the reverse fault, N26°W/33°NE, is similar to those of the reported faults distributed along the Ulsan fault zone. Although a single apparent displacement of approximately 40 cm has been observed, the true displacement could not be calculated due to the absence of the slickenline on the fault plane. Based on the geochronological results of the cryogenic structure proposed in a previous study, the most recent faulting event has been estimated as being earlier than the late Wurm glaciation. We interpreted the thrust fault system of the study area as an imbrication structure based on the previous studies and the fault geometry obtained in this additional trench. Although several previous investigations including many trench surveys have been conducted, they found limited success in obtaining the information on fault parameters, which could be due to complex characteristics of the reverse fault system. Additional paleoseismic studies will contribute to solving the mentioned problems and the comprehensive fault evolution.

Preliminary Experiment for High-resolution Measurement of Tissue Mechanical Properties Using Dynamic Optical Coherence Elastography (동적 광단층 탄성영상법을 이용한 조직의 고해상도 기계적 성질 측정을 위한 예비 실험)

  • Kwon, Daa Young;Ahn, Yeh-Chan
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.3
    • /
    • pp.99-103
    • /
    • 2018
  • Optical coherence elastography (OCE) is based on optical coherence tomography (OCT), which is a noninvasive, high-resolution, cross-sectional imaging technique. In this paper, we have developed dynamic optical coherence elastography to measure elasticity, a mechanical property of tissue, by phase difference. A piezoelectric actuator was used for sinusoidal mechanical loading of samples. Before applying this method to biomaterial, we assessed the feasibility of OCE with samples of sponge, eraser, and sharp lead. Cross-sectional and phase-difference images of the sample were obtained under sinusoidal loading. The strain rate was calculated from the phase-difference information. To obtain the envelope of the phase-difference oscillations along the horizontal direction, Hilbert transformation was performed at each depth. The elevation of the envelope was represented by color mapping, and we could measure the relative elasticity within the sample by comparing the elevations. Finally, there was an advantage when we calculated the shear rate using self-interference in the sample arm, instead of the interference between sample and reference arms.

Implementation of the Wavelength-Swept-Source and Signal Processing for the Frequency Domain Optical Coherence Tomography (주파수영역 광 간섭 단층촬영 시스템을 위한 파장가변 광원 및 신호처리계의 구현)

  • Lee, Eung-Je;Kim, Yong-Pyung
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.5
    • /
    • pp.309-316
    • /
    • 2007
  • We demonstrate the wavelength swept source and signal processing for the frequency domain optical coherence tomography. The laser output performance is improved by using a semiconductor optical amplifier with a booster amplifier. The laser generates 14 mW of average power of which wavelength shift in the lasing spectral shape is compensated. Adopting a Fabry-Perot etalon and digital signal processing, the broadening of the beat frequency due to the variance of wavelength-sweep-velocity is calibrated. The optical coherence tomography system shows 154.4 kHz of axial scanning speed, 0.95mm of depth range, and $12{\pm}0.37{\mu}m$ of axial resolution.

Characteristics of Joint Systems and Their Relationship with Groundwater System in the Nakdong River Mid-basin (낙동강 중류 유역의 단열계 특성 및 지하수계와의 관련성)

  • Kim, Deuk-Ho;Lee, Jong-Hyun;Park, Kyu-Tae;Kim, Seong-Chang;Choi, Yu-Mi;Seo, Yu-Ri;Noh, Gyung-Myung;Hamm, Se-Yeong
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.483-492
    • /
    • 2008
  • The characteristics of joint system (joint orientation and density) were studied for Cretaceous sedimentary rocks in the Nakdong River mid-basin (Haman-Gun, Changnyeong-Gun, and Uiryeong-Gun areas), and were related with faults, river system, and groundwater usage in the study area. The joint system was classified into JI ($N90^{\circ}-110^{\circ}E$), J2 ($N0^{\circ}-35^{\circ}E$), and J3 ($(N0^{\circ}-35^{\circ}W$), and was dominant along N-S and E-W directions. The N-S trending joint system is dominant in Haman Formation in the eastern and western parts of the study area, while the E-W trending joint system is prevalent in Chilgok Formation in the central part. The joint system may be associated with the faults located in the eastern and western parts in the study area which are elongated to NNE-SSW direction. Additionally, the joint density is higher along the Nakdong River, indicating close relationship between E-W trending joints and the river. Daily groundwater discharge versus joint density shows weak positive relationship, and specific capacity versus joint density appears negatively related. This indicates that groundwater occurrence does not greatly rely on joint density.

Gravity Field Interpretation and Underground Structure Modelling as a Method of Setting Horizontal and Vertical Zoning of a Active Fault Core (활성단층의 3차원적인 규모를 결정하기 위한 중력장 데이터의 해석 및 지각구조 모델링: 양산단층에서의 예)

  • Choi, Sungchan;Kim, Sung-Wook;Choi, Eun-Kyeong;Lee, Young-Cheol;Ha, Sangmin
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.91-103
    • /
    • 2021
  • In order to estimate the vertical and horizontal structural in the Yangsan fault core line (Naengsuri area, Pohang), we carried out gravity field measurements and interpretation procedures such as Euler deconvolution method and curvature analysis in addition to the forward modelling technique (i.e. IGMAS+). We found a prominent gravity difference of more than 1.5 mGal across the fault core. This indicates a distinct density difference between the western and eastern crustal area across the Yangsan fault line. Comparing this gravity field interpretation with other existent geologic and geophysical survey data (e.g. LiDAR, trenching, electric resistivity measurements), It is concluded that (1) the prominent gravity difference is caused by the density difference of about 0.1 g/㎤ between the Bulguksa Granite in the west and the Cretaceous Sandstone in the east side, (2) the fault core is elongated vertically into a depth of about 2,000 meters and extended horizontally 3,000 meters to the NNE direction from Naengsuri area. Our results present that the gravity field method is a very effective tool to estimate a three -dimensional image of the active fault core.

Sedimentary History and Tectonics in the Southeastern Continental Shelf of Korea based on High Resolution Shallow Seismic Data. (고해상탄성파탐사자료에 의한 한국남동대륙붕의 퇴적사 및 조구조운동)

  • Min Geon Hong;Park Yong Ahn
    • The Korean Journal of Petroleum Geology
    • /
    • v.5 no.1_2 s.6
    • /
    • pp.1-8
    • /
    • 1997
  • Seismic stratigraphic analysis of the high resolution profiles obtained from the southeastern shelf of Korea divided the deposits into 4 sequences; 1) sequence D, 2) sequence C, 3) sequence B and 4) sequence A (Holocene sediments). Sequence D was deposited in shallow-water environment at west of the Yangsan Fault as the basin subsided. On the other hand, the eastern part was formed at the slope front. Landward part of the slope-front fill sediments were eroded and redeposited nearby slope due to the syndepositional tilting of the basin. This tilting probably resulted from the continuous closing of the Ulleung Basin. Sequence C is made of stacked successions of the lowstand fluvial sediments, transgressive sediments and marine highstand sediments derived from the paleo-river in the western part of the Yangsan Fault. Sequence C in the eastern part of the Yanshan Fault was formed at the shelf break. Progradation of the lowstand sediments resulted in broadening of the shelf. Sequence C in the eastern part was also tilted but the tilting was weaker than in Sequence D. During the formation of sequence B the tilting stopped and the point source instead of the line source started in both sides of the Yangsan Fault. Sequence B was composed of the highstand systems tract partially preserved around the Yokji island, lowstand systems tract mainly preserved in the Korea Trough and transgressive systems tract. After the stop of the tilting, the force of compression due to the closing of the Ulleung Basin may be released by the strike-slip faults instead of tilting.

  • PDF

Electronic Signal Processing for OCT (OCT를 위한 신호처리계)

  • 이병하;최은서;나지훈;이창수
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.292-293
    • /
    • 2003
  • 최근 생체의 단층영상 촬영기법으로 각광을 받고 있는 OCT (Optical Coherence Tomography)는 백색광 간섭계를 근간으로 하여 생체의 깊이 정보를 얻어낸다. 2-D 또는 3-D의 입체영상을 얻기 위해서는 1축 또는 2축의 횡방향 스캔이 필요하다. 횡방향 스캔 기법은 SEM (Scanning electron microscope)이나 공초점현미경 (Confocal microscope) 등에서 널리 사용되고 있으므로 기술적인 흥미는 적으나 축방향 (깊이 방향)의 정보 취득 방법은 OCT만의 특징으로 아직 기술적으로 해결 되어야될 부분이 많다. (중략)

  • PDF

감포남서부 효동리일대 화산암류와 벤토나이트의 분포 및 암석 화학적 특징

  • 윤현수;홍세선;박덕원;유장한;김용욱;김대업
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.291-293
    • /
    • 2003
  • 감포남서부 효동리일대는 효동리 화산암류(다데이와, 1924)로 보고된 바 있으나, 야외조사결과 경상계 퇴적암, 화산쇄설암류, 안산암류, 데사이트류, 석영장석반암류, 유문암류 그리고 염기성 암맥류로 구분될 수 있다. 경상계 퇴적암은 최하부층으로서 대체로 완만한 경사를 이루며 주로 셰일로 구성되며 일부 사암이 발달한다 화산쇄설암류는 가장 넓게 분포되며, 쇄설물의 크기에 따라 부분적으로 분대되기도 하나, 대부분 연속성이 빈약한 편이다. (중략)

  • PDF

동해 중부지진에 의한 쯔나미 산정

  • 최병호;이호준
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1992.08a
    • /
    • pp.29-33
    • /
    • 1992
  • 1983년 5월 26일 추전(Akida), 청삼(Aomori)현 서측의 해저에서 발생했던 동해 중부지진 쯔나미를 자세히 산정하기 위한 시도를 수행한다. 초기조건으로 Mansinha & Smylie의 단층기형에 의한 수면상승을 정의하였고, 2차원 구면좌표계 상에서 모형을 구성하였다.(중략)

  • PDF