DOI QR코드

DOI QR Code

Preliminary Experiment for High-resolution Measurement of Tissue Mechanical Properties Using Dynamic Optical Coherence Elastography

동적 광단층 탄성영상법을 이용한 조직의 고해상도 기계적 성질 측정을 위한 예비 실험

  • Kwon, Daa Young (Interdisciplinary Program of Biomedical Mechanical & Electrical Engineering, Pukyong National University) ;
  • Ahn, Yeh-Chan (Interdisciplinary Program of Biomedical Mechanical & Electrical Engineering, Pukyong National University)
  • 권다영 (부경대학교 의생명기계전기융합공학협동과정) ;
  • 안예찬 (부경대학교 의생명기계전기융합공학협동과정)
  • Received : 2018.04.19
  • Accepted : 2018.05.25
  • Published : 2018.06.25

Abstract

Optical coherence elastography (OCE) is based on optical coherence tomography (OCT), which is a noninvasive, high-resolution, cross-sectional imaging technique. In this paper, we have developed dynamic optical coherence elastography to measure elasticity, a mechanical property of tissue, by phase difference. A piezoelectric actuator was used for sinusoidal mechanical loading of samples. Before applying this method to biomaterial, we assessed the feasibility of OCE with samples of sponge, eraser, and sharp lead. Cross-sectional and phase-difference images of the sample were obtained under sinusoidal loading. The strain rate was calculated from the phase-difference information. To obtain the envelope of the phase-difference oscillations along the horizontal direction, Hilbert transformation was performed at each depth. The elevation of the envelope was represented by color mapping, and we could measure the relative elasticity within the sample by comparing the elevations. Finally, there was an advantage when we calculated the shear rate using self-interference in the sample arm, instead of the interference between sample and reference arms.

동적 광단층 탄성영상법은 광 결맞음 단층촬영법을 기반으로 하여 위상차에 의해 조직의 기계적 성질 중 하나인 탄성도를 측정하기 위한 기법이다. 광 결맞음 단층촬영법은 마이켈슨 간섭계를 기반으로 한 비침습적 고해상도 단면 촬영기법이다. 본 논문에서는 광단층 탄성영상법을 생체 조직에 적용하기 전에 실행가능성을 판단하고자 강도를 쉽게 구분할 수 있는 지우개, 스펀지, 샤프심으로 샘플을 제작하여 실험을 진행하였다. 샘플에 사인파의 일정한 진동자극을 가하기 위해 압전액추에이터를 샘플의 아래쪽에 위치시켰으며 위쪽에서 광 결맞음 단층촬영법으로 스캔하였다. 깊이마다 횡방향에 대한 변형속도를 힐버트 변환하여 포락선을 검출한 후 포락선의 높낮이를 색깔로 표현하여 이미지 상에서 샘플 내의 상대적인 강도를 비교할 수 있었다. 또한, 샘플단과 참조단 사이의 간섭을 이용하는 것보다 샘플단 내의 자기간섭을 이용할 경우 변형속도 계산에 있어 장점이 있음을 제시하였다.

Keywords

References

  1. X. Liang, V. Crecea, and S. A. Boppart, "Dynamic optical coherence elastography: a review," J. Innov. Opt. Health Sci. 3, 221-233 (2010). https://doi.org/10.1142/S1793545810001180
  2. K. V. Larin and D. D. Sampson, "Optical coherence elastography - OCT at work in tissue biomechanics [Invited]," Biomed. Opt. Express 8, 1172 (2017). https://doi.org/10.1364/BOE.8.001172
  3. R. K. Wang, Z. Ma, and J. Kirkpatrick, "Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue," Appl. Phys. Lett. 89, 144103 (2006). https://doi.org/10.1063/1.2357854
  4. J. Weickenmeier, R. de Rooij, S. Budday, P. Steinmann, T. C. Ovaert, and E. Kuhl, "Brain stiffness increases with myelin content," Acta Biomater. 42, 265-272 (2016). https://doi.org/10.1016/j.actbio.2016.07.040
  5. B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, "In vivo dynamic optical coherence elastography using a ring actuator," Opt. Express 17, 21762-21772 (2009). https://doi.org/10.1364/OE.17.021762
  6. Y.-C. Ahn, W. Jung, and Z. Chen, "Optical sectioning for microfluidics: secondary flow and mixing in a meandering microchannel," Lab. Chip 8, 125-133 (2008). https://doi.org/10.1039/B713626A
  7. X. Liang, S. G. Adie, R. John, and S. A. Boppart, "Dynamic spectral-domain optical coherence elastography for tissue characterization," Opt. Express 18, 14183-14190 (2010). https://doi.org/10.1364/OE.18.014183