• Title/Summary/Keyword: 단조

Search Result 1,514, Processing Time 0.023 seconds

Shape Optimization of Metal Forming and Forging Products using the Stress Equivalent Static Loads Calculated from a Virtual Model (가상모델로부터 산출된 응력 등가정하중을 이용한 금속 성형품 및 단조품의 형상최적설계)

  • Jang, Hwan-Hak;Jeong, Seong-Beom;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1361-1370
    • /
    • 2012
  • A shape optimization is proposed to obtain the desired final shape of forming and forging products in the manufacturing process. The final shape of a forming product depends on the shape parameters of the initial blank shape. The final shape of a forging product depends on the shape parameters of the billet shape. Shape optimization can be used to determine the shape of the blank and billet to obtain the appropriate final forming and forging products. The equivalent static loads method for non linear static response structural optimization (ESLSO) is used to perform metal forming and forging optimization since nonlinear dynamic analysis is required. Stress equivalent static loads (stress ESLs) are newly defined using a virtual model by redefining the value of the material properties. The examples in this paper show that optimization using the stress ESLs is quite useful and the final shapes of a forming and forging products are identical to the desired shapes.

A Research on the improvement scheme for manufacturing bronze warm forging die through environment-friendly workshop (황동제 온간단조용 금형제작과 환경친화형 작업장 개선에 관한 연구)

  • Kim, Sei-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.420-425
    • /
    • 2010
  • In the process of warm forging, billet is heated up to $800^{\circ}C$ and located in the upper part of die block impression. The scattered oxidized scale may cause workers burn and shortening of die life sticking to the die block impression. The separating materials sprayed in die block cause harmful dust, harmful mist, fume, and bad odor which contaminate workshop environment. The process is classified as one of the avoided jobs and make the planned output achievement difficult. Development of an elimination device to clear out the contaminating materials in the workshop and improvement of the unsatisfactory maintenance method to fix the abrasion of die block impression which delays the dead line, cost increases needs to be developed. In this research, I tried to solve the problems caused in warm forging of bronze pipe joint such as the billet heating process, die maintenance, and manufacturing cost through improvement of warming forging manufacturing method and die maintenance method and eliminating harmful gas which will make the workshop more environment friendly.

Production Process Development and Prototype Evaluation for Roller Tappet Housing of Valvetrain (밸브트레인용 롤러태핏 하우징의 제작 공정 개발 및 시제품 평가)

  • Gwak, Eun-Jo;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.223-229
    • /
    • 2016
  • In this study, a cold forging process was developed for the roller tappet housing of an engine valvetrain system. A tappet sample was manufactured and subjected to an endurance test. The material properties were obtained from a compression test, and forging analysis was carried out to design a forging process using a commercial program, Deform-3D. The forging process was set up based on the analysis results, and a die set and sample tappet housing were manufactured. To evaluate the sample, the dimensional accuracy, surface roughness, parallelism, and concentricity were measured and confirmed. To evaluate the actuation and durability, a special test rig was developed to simulate the valvetrain system of the engine. An actuation test was performed based on the idle speed of a general diesel engine, and an endurance test was done based on the maximum speed. The results show minor wear of 0.002 mm. The developed test rig will be used to evaluate the actuation and durability of other valvetrain parts.

Improving Yield Strength of A694-F70 Flange Manufactured by Hot Forging Process (열간 단조 제품 A694-F70 플랜지의 항복강도 향상)

  • Woo, Ta-Kwan;Lee, Hyun-Woo;Jeon, Chung-Hwan;Chang, Young-June;Kim, Chul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.8
    • /
    • pp.1068-1073
    • /
    • 2010
  • A welding neck flange is widely used for an interconnection between pipes. It is produced by a hot forging process, and required high yield strength under the high pressure condition, like a deep-sea. Generally, to increase yield strength, a increasing of carbon content is used, however a carbon content of welding neck flange is limited to 0.47. So, in this study, a strengthening by grain refinement without changing carbon content is used to increase yield strength. Taguchi method and FEM are used for the optimization of forging process and the experiment for the yield strength of the prototype with the optimal forging process is performed for validity.

A Research on the Life Span extension of Die Block in Cold Forging Die (냉간단조금형에서 다이블록의 수명연장에 관한 연구)

  • Kim, Sei-Hwan;Choi, Kye-Kwang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.281-285
    • /
    • 2008
  • Die hobbing is one of the dieblock manufacturing methods of cold forging die, which makes the upper side of dieblock indented using master punch, hobb to produce impression not using cutting work. SKD11, alloy tool steel was used as the material of dieblock and stainless sheet metal was used as product material in cold forging work. The life span of the die was 6,000 strokes. In this research, the material of dieblock was changed into SKH51, the high speed tool steel and the product material was S45C, the carbon steel in the cold forging work. The life span of the die was 21,000 strokes, which is 350% of the life span of the die using the former method.

Estimation of smooth monotone frontier function under stochastic frontier model (확률프런티어 모형하에서 단조증가하는 매끄러운 프런티어 함수 추정)

  • Yoon, Danbi;Noh, Hohsuk
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.5
    • /
    • pp.665-679
    • /
    • 2017
  • When measuring productive efficiency, often it is necessary to have knowledge of the production frontier function that shows the maximum possible output of production units as a function of inputs. Canonical parametric forms of the frontier function were initially considered under the framework of stochastic frontier model; however, several additional nonparametric methods have been developed over the last decade. Efforts have been recently made to impose shape constraints such as monotonicity and concavity on the non-parametric estimation of the frontier function; however, most existing methods along that direction suffer from unnecessary non-smooth points of the frontier function. In this paper, we propose methods to estimate the smooth frontier function with monotonicity for stochastic frontier models and investigate the effect of imposing a monotonicity constraint into the estimation of the frontier function and the finite dimensional parameters of the model. Simulation studies suggest that imposing the constraint provide better performance to estimate the frontier function, especially when the sample size is small or moderate. However, no apparent gain was observed concerning the estimation of the parameters of the error distribution regardless of sample size.

Rate-Monotonic Scheduler with Extended Schedulability Inspection for Hard Real-Time Tesk (경성 실시간 태스크를 위한 확장된 스케줄 가능성 검사를 갖는 비율단조 스케줄러)

  • 신동헌;조수현;김영학;김태형
    • The Journal of the Korea Contents Association
    • /
    • v.4 no.2
    • /
    • pp.50-60
    • /
    • 2004
  • Recently, most of the embedded system is required not only many functions but also real-time characteristics in purpose. In the hard real-time system, especially, strict deadline of periodic task can affect the performance of the system. In this paper, we design and implement the scheduler based on RM(Rate-Monotonic) rule. This scheduler makes feasible patterns based on EDF(Earliest deadline first) rule with extended schedulability inspection before execution, for periodic task-set that has high CPU utilization and then, execute periodic task-set depended on feasible patterns. The feasible pattern formed into EDF rule is capable of the efficiency of CPU up to 100 percentage and by the referenced execution of the feasible pattern is possible of removing the red-time scheduling overhead that is the defect of the order of dynamic assignment rule.

  • PDF

Evaluation of Uncertainty Importance Measure for Monotonic Function (단조함수에 대한 불확실성 중요도 측도의 평가)

  • Cho, Jae-Gyeun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.15 no.5
    • /
    • pp.179-185
    • /
    • 2010
  • In a sensitivity analysis, an uncertainty importance measure is often used to assess how much uncertainty of an output is attributable to the uncertainty of an input, and thus, to identify those inputs whose uncertainties need to be reduced to effectively reduce the uncertainty of output. A function is called monotonic if the output is either increasing or decreasing with respect to any of the inputs. In this paper, for a monotonic function, we propose a method for evaluating the measure which assesses the expected percentage reduction in the variance of output due to ascertaining the value of input. The proposed method can be applied to the case that the output is expressed as linear and nonlinear monotonic functions of inputs, and that the input follows symmetric and asymmetric distributions. In addition, the proposed method provides a stable uncertainty importance of each input by discretizing the distribution of input to the discrete distribution. However, the proposed method is computationally demanding since it is based on Monte Carlo simulation.

A Study on the Development for the Future Compressor Cylinder Block Using of Cold & Hot Forging Method (냉.온간포징법을 이용한 차세대 콤프레샤 실린더 블록 개발에 관한 연구)

  • Kim Soon-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.7
    • /
    • pp.1301-1306
    • /
    • 2006
  • Aluminum alloys are gaining increased acceptance in the automotive and electronic industeries and cold & hot forging is the most efficient method of manufacturing such mass produced parts. This study has been investigated the microstructures and mechanical properties of A6061(Al-1.2Mg-0.8Si) alloy fabricated by cold & hot forging process for development of the future compressor block. The microstructure of cold & hot forginged specimen were composed of eutectic structure aluminum solid solution and $Mg_2Si$ precipitates. The tensile strength of as-solid solution treatment A6061 alloy revealed 291.7MPa. It was fabricated that a trial future compressor cylinder block using cold & hot forging.

Experimental Study on Concrete Steel Circular Tubes Confined by Carbon Fiber Sheet under Axial Compression Loads (탄소섬유쉬트로 구속된 콘크리트충전 원형강관기둥의 단조압축실험)

  • Park, Jai-Woo;Hong, Young-Kyun;Hong, Gi-Soup;Choi, Sung-Mo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.5
    • /
    • pp.61-71
    • /
    • 2009
  • This paper presents the results of an experiment comparing the current circular CFT columns and circular CFT columns that were additionally confined by carbon fiber sheets (CFS) under axial loading. The main experimental parameters are the numbers of CFS layers and the diameter-to-thickness ratio. 10 specimens were prepared according to the experimental parameter plans, and axial compression tests were conducted. From the tests, the failure procedure, load-axial deformation curve, maximum axial strength, and deformation capacity of the CFT columns and confined CFT columns were compared. The test results showed that the maximum axial strengths of CFT columns additionally confined by CFS are increased higher than those of the current CFT columns, and that local buckling can be delayed due to the confinement effect of CFS.