• Title/Summary/Keyword: 단조해석

Search Result 378, Processing Time 0.028 seconds

Nonlinear Analysis of RC Beams under Cyclic Loading Based on Moment-Curvature Relationship (모멘트-곡률 관계에 기초한 반복하중을 받는 철근콘크리트 보의 비선형 해석)

  • 곽효경;김선필
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.2
    • /
    • pp.245-256
    • /
    • 2000
  • A moment-curvature relationship to simulate the behavior of reinforced concrete beam under cyclic loading is introduced. Unlike previous moment-curvature models and the layered section approach, the proposed model takes into consideration the bond-slip effect by using monotonic moment-curvature relationship constructed on the basis of the bond-slip relation and corresponding equilibrium equation at each nodal point. In addition, the use of curved unloading and reloading branches inferred from the stress-strain relation of steel gives more exact numerical result. The advantages of the proposed model, comparing to layered section approach, may be on the reduction in calculation time and memory space in case of its application to large structures. The modification of the moment-curvature relation to reflect the fixed-end rotation and pinching effect is also introduced. Finally, correlation studies between analytical results and experimental studies are conducted to establish the validity of the proposed model.

  • PDF

Plan on the Analysis and Improvement of the Molding process of SCM435 bolt by use of the Finite Element Method (유한요소법을 이용한 SCM435 Bolt의 성형 공정에 관한 해석 및 공정 개선 방안)

  • Ahn, Kyo-Chul;Choi, Chui-Kyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.4950-4955
    • /
    • 2012
  • A bolt manufacturing process is completed with continuous forging. Technical and economical success of each process will depend on the appropriate process design and metal mold design for each procedure. This study aims to analyze the moldings of first and second steps among the multi-step molding processes of SCM435 bolt by use of the finite element method in order to achieve the reasonable process. Since the processes of first and second steps analyzed by use of the finite element method consist of axial symmetry, the transformed configuration of material satisfy the dimensions expected in process. In addition, the uniflow line formed in material becomes smooth and consistent over the entire process. Therefore neither molding of material nor inherent defect is expected.

Numerical Study of Hydrogen/Air Combustion in Combustion Chamber of Ultra Micro Gas Turbine by Change of Flow Rate and Equivalence Ratio (공급 유량 및 당량비 변화에 따른 초소형 가스터빈 연소실 내 수소/공기 연소의 수치해석 연구)

  • Kwon, Kilsung;Hwang, Yu Hyeon;Kang, Ho;Kim, Daejoong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.2
    • /
    • pp.103-109
    • /
    • 2013
  • In this study, we performed a numerical study of hydrogen/air combustion in the combustion chamber of an ultra micro gas turbine. The supply flow rate and equivalence ratio are used as variables, and the commercial computational fluid dynamic program (STAR-CCM) is used for the numerical study of the combustion. The flow rate significantly affects the flame position, flame temperature, and pressure ratio between the inlet and the outlet. The flame position is close to the outlet in the combustion chamber, and the flame temperature and pressure ratio monotonously increases with the supply flow rate. The change in the equivalence ratio does not affect the flame position. The maximum flame temperature occurs under stoichiometric conditions.

Effect of Interaction between Nutritional Level and Breed on Performance of Broiler Production (BROILER 사료의 영양수준이 육용계종의 산육능력에 미치는 영향)

  • 오봉국;오세정
    • Korean Journal of Poultry Science
    • /
    • v.6 no.1
    • /
    • pp.12-23
    • /
    • 1979
  • This experiment was carrid out to investigate the interaction between boilelr strains and nutrition levels, and the performances of four broiler strains such as Han Hyup 603, Hubbard, Anak and Filch when they were fed by four different nutrition levels (High Protein and energy; HP. HE., Medium Protein and energy; MP. ME., Low Protein ana energy; LP. LE., and low protein and energy; LLP. LLE.). The data used in this study were obtained from a total of 1200 broiler type chicks in Poultry Testing Station, Korean Poultry Association from June 16, to August 11, 1978. Differences of all characters among four nutrition levels were significant except viability and carcass rate. HP. HE and MP. ME treatments showed nearly the same performances in body weight, feed efficiency and point, spread but they were significantly superior to those of LP. LE and LLP. LLE. There were not significant differences among four strains in feed efficiency and viability but other characters, body weight, point spread and carcass rate were observed that the performance of the best strain B was significantly superior to strain D but it was not recognized significance compared with strain A, C in tile result of statisticel analysis. In the interaction between strains and nutrition levels, body weight at high and levels showed significantly differences but at low and low nutrition levels were nearly same among four strains. Therefore this study demonstrated that comparision of body weights between strains should be performed at medium nutrition level or above. Also point spread calculated as index of body weight and feed efficiency was observed that strain B at low nutrition level is excellently higher than other strains and there were little differences at low nutrition level among all strains. It was found that ]it tie differences between performances of high arid medium levels seemed to be as the reason of high fat addition for energy source to high mutrition feed, and in general superior strain showed good performance at all the nutrition levels in$.$all characters but in body weight and point spread there were significantly different responses with different nutrition level, The most superior strain B among four strains earned the most profit per bird, Although performances of high and medium nutrition levels were nearly the same, medium nutrition level also showed the most profit because the feed cost of high nutrition level was higher than that of medium nutrition level.

  • PDF

A Forging Analysis and Mechanical Properties Evaluation of Superalloy Exhaust Valve Spindle (초내열 합금 배기 밸브 스핀들 단조 해석 및 기계적 특성 평가)

  • Choi, S.G.;Oh, J.S.;Jeong, H.S.;Cho, J.R.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.84-88
    • /
    • 2009
  • The nickel-based alloy Nimonic 80A possesses strength, and corrosion, creep and oxidation resistance at high temperature. The exhaust valves of low speed diesel engines are usually operated at temperature levels of 400-$600^{\circ}C$ and high pressure to enhance thermal efficiency and exposed to the corrosion atmosphere by the exhaust gas. Also, the exhaust valve is subjected to repeated thermal and mechanical loads. So, the nickel-based alloy Nimonic 80A was used for the large exhaust valve spindle. It is composed a 540mm diameter head and a 125mm diameter stem. It is developed large products by hot closed-die forging. Manufacturing process analysis of the large exhaust valve spindle was simulated by closed die forging with hydraulic press and cooled in air after forging. The preform was heated to $1080^{\circ}C$ Numerical calculation was performed by DEFORM-2D, a commercial finite element code. Heat transfer can be coupled with the deformation analysis in a non-isothermal deformation analysis. Mechanical properties of the large exhaust valve spindle were evaluated by the variety of tests, including microstructure observation, tensile, as well as hardness and fatigue tests, were conducted to evaluate the mechanical properties for head part of exhaust valve spindle.

  • PDF

Analysis of Frictional Contact Problems of Nonlinearly Deformable Bodies by Using Contact Error Vector (접촉 오차 벡터를 이용한 비선형 변형체의 마찰접촉 해석)

  • Lee, Kisu;Kim, Bang-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.3
    • /
    • pp.305-319
    • /
    • 2000
  • Numerical solution lot frictional contact problems of nonlinearly deformable bodies having large deformation is presented. The contact conditions on the possible contact points are expressed by using the contact error vector, and the iterative scheme is used to reduce the contact error vector monotonically toward zero. At each iteration the solution consists of two steps : The first step is to revise the contact force by using the contact error vector given by the previous geometry, and the second step is to compute the displacement and the contact error vector by solving the equilibrium equation with the contact force given at the first step. Convergence of the iterative scheme to the correct solution is analyzed, and the numerical simulations we performed with a rigid-plastic membrane and a nonlinear elastic beam.

  • PDF

An Integrated Process Planning System and Finite Element Simulation for Multistage Cold Forging (유한요소해석을 통합한 다단 냉간단조 공정설계시스템)

  • 최재찬;김병민;이언호
    • Transactions of Materials Processing
    • /
    • v.4 no.1
    • /
    • pp.28-38
    • /
    • 1995
  • An integrated process planning system can determine desirable operation sequences even if they have little experience in the design of multistage cold forging process. This system is composed of seven major modules such as input module, pre-design module, formability check module, forming sequence design module, forming analysis module, FEM verification module, and output module which are used independently or in all. The forming sequence for the part can be determined by means of primitive geometries such as cylinder, cone, convex, and concave. By utilizing this geometrical characteristics(diameter, height, and radius), the part geometry is expressed by a list of the primitive geometries. Accordingly, the forming sequence design is formulated as the search problem which starts with a billet geometry and finishes with a given product one. Using the developed system, the sequence drawing with all dimensions, which includes the dimensional tolerances and the proper sequence of operations for parts, is generated under the environment of AutoCAD. Several forming sequences generated by the planning system can be checked by the forming analysis module. The acceptable forming sequences can be verified further, using FE simulation.

  • PDF

An Analysis of Closed Die Forging of Laser Printer Shaft by Finite Element Method (레이저 프린터용 샤프트 밀폐단조 성형해석)

  • Cho, S.H.;Shin, M.S.;Kim, J.H.;Ra, S.W.;Kim, J.B.
    • Transactions of Materials Processing
    • /
    • v.18 no.2
    • /
    • pp.150-155
    • /
    • 2009
  • A shaft for laser printers has to be produced with high dimensional accuracy of a few micrometers. Most companies produce the shaft, therefore, by machining. These days, forging process is tried to be employed in manufacturing the shaft for productivity. In this study, the dimensional inaccuracy of straightness is studied and the underfill is not focused because the shaft shape is simple and the load capacity of press is sufficient. The straightness and concentricity of the shaft is important for the operation of a laser printer. Many design parameters such as preform shapes, tooling dimensions, forging load, and billet geometries may affect on the dimensional accuracy. In the forging process of shafts, a billet which is cut from wires is used. The billet, therefore, may be a little bit curved but not always straight. The elastic recovery is considered to cause the dimensional inaccuracy. Therefore, the effect of the forging load on the elastic recovery and straightness is investigated through the finite element analyses using DEFORM-3D and ABAQUS.

Development of Large Rotor Shaft for Marine Turbo Charger Using Friction Welding with Dissimilar Materials (마찰용접을 이용한 대형선박 터보챠저용 이종 로타샤프트 개발)

  • Moon, Kwang-Ill;Jeon, Jong-Won;Jeong, Ho-Seung;Cho, Jong-Rae;Choi, Sung-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.4
    • /
    • pp.257-264
    • /
    • 2016
  • Solid state joining techniques are increasingly applied in a wide range of industrial applications. Friction welding is a solid state welding technique that is used to join similar or dissimilar materials. In this study, friction welding was applied to rotor shaft composed of a disk and a shaft. The disk and shaft were manufactured by hot forging and rolling, respectively. The aim of the study was to predict the structural characteristics during hot forging and friction welding process for rotor shaft of turbo charger. The structural characteristics were determined by heat input and heat affected zone (HAZ) during a short cycle time. Thus, transient FE analysis for hot forging and friction welding was based on heat transfer. The results were used to predict structural characteristics during hot forging and friction welding processes. The prototype of rotor shaft was manufactured by the result-based process parameters.

Development of Press Forming Technology for the Multistage Fine Tooth Hub Gear (다단 미세 치형 허브기어의 프레스 성형기술개발)

  • Kim Dong-Hwan;Ko Dae-Cheol;Lee Sang-Ho;Byun Hyun-Sang;Kim Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.44-51
    • /
    • 2006
  • This paper deals with the aspects of die design for the multistage fine tooth hub gear in the cold forging process. In order to manufacture the cold forged product for the precision hub gear used as the ARD 370 system of bicycle, it examines the influences of different designs on the metal flow through experiments and FE-simulation. To find the combination of design parameters which minimize the damage value, the low gear length, upper gear length and inner diameter as design parameters are considered. An orthogonal fraction factorial experiment is employed to study the influence of each parameter on the objective function or characteristics. The optimal punch shape of fine tooth hub gear is designed using the results of FE-simulation and the artificial neural network. To verify the optimal punch shape, the experiments of the cold forging of the hub gear are executed.