• Title/Summary/Keyword: 단접

Search Result 9, Processing Time 0.029 seconds

Material Characteristics of Forge Welded Bar and By-product through Reproduction Experiment to the Refining and Forge Welding Process (정련·단접 공정 재현 실험을 통해 생산된 소재 및 부산물의 재료학적 특성)

  • Oh, Min Jee;Cho, Hyun Kyung;Cho, Nam Chul;Han, Jung Uk
    • Journal of Conservation Science
    • /
    • v.34 no.2
    • /
    • pp.87-96
    • /
    • 2018
  • This study analyzed the influence of folding time on the forge welded bar and hammer scale produced using the traditional refining and forge welding reproduction experiment. In the case of the forge welded bar, increasing the forging time decreased the percentage of impurities and porosity from 26.09% to 1.8%. Additionally, the hardness increased by an average of 36.88 HV. In other words, the microstructure gradually became more precise. For the hammer scale, the amount of T Fe increased with forging time. X-ray diffraction analysis revealed the presence of quartz, fayalite, $w{\ddot{u}stite$, and magnetite. The amount of quartz decreased as the forging time increased. In addition, as the forging time increased, the granular $w{\ddot{u}stite$ changed into a cohesive, long, white band. The results provide information on the characteristics of the forge welded bar and hammer scale produced in the refining and forging process. This information can be used as technical data for ancient steel making processes as well as for future technological systems.

A Comparative Study on the Surface Patterns Applied to the Traditional Refining and Forge Welding Process Using Iron (철을 이용한 전통 정련·단접 과정 적용 소재별 표면무늬 금속학적 비교 연구)

  • Oh, Min Jee;Cho, Sung Mo;Cho, Nam Chul;Han, Jeong Wook
    • Journal of Conservation Science
    • /
    • v.35 no.5
    • /
    • pp.440-452
    • /
    • 2019
  • This research has analyzed SI, the traditional steel, and SIHS(SI + HS), SICS(SI + CS), and SINiS(SI + NiS), the materials that were produced through welding and reprocessing three modern steel- HS, CS, and NiS- that have different carbon content. The purpose of the analyzation was to improve the definition of the multi-layered pattern that appears in the forging process. In observing modified structures on the commissures of three modern steel that have different carbon component to the SI, SINiS produced the most significant multi-layered pattern as well as the excellent welding quality. The excellent welding quality was due to the content of nickel which helped the forge welding process with other materials. There was no significant difference in crystal grain per materials, and SICS showed the highest hardness. At the measurement of EPMA for commissures of the materials, SINiS showed the highest definition of the multi-layered pattern due to the nickel and carbon content. The results above showed that the carbon steel with nickel content is the best material for the most definite multi-layered pattern, expressed from the multi-layered structure which is a characteristic of traditional forge welding technology. It is expected that the result of this research can be utilized as the technical data in further researches regarding the relics excavated from ancient welding process and their multi-layered structure and patterns.

A Study on the Metallurgical Characteristic of Hammer Scale Produced through Traditional Iron-making Experiments (전통 제철실험을 통해 생산된 단조박편의 재료과학적 특성 연구)

  • Cho, Sung Mo;Cho, Nam Chul
    • Journal of Conservation Science
    • /
    • v.37 no.6
    • /
    • pp.738-747
    • /
    • 2021
  • This study attempted to investigate the metallurgical characteristic through material scientific analysis of hammer scale produced as a direct smelting method restoration experiment for each raw material of iron. To this end, four hammer scale groups were set up, respectively, by experimenting with Gyeongju-Gampo Iron sand and Yangyang Iron ore. For the analysis, principal component analysis, compound analysis, microstructure observation, and chemical composition were confirmed. As a result of principal component analysis, as forging and refining progressed, the content of Fe increased and the content of non-metallic objects decreased. As a result of compound analysis, iron oxide-based compounds were identified. As a result of confirming microstructure and chemical composition, Wüstite and Fayalite were observed overall, and agglomerated Wüstite were observed in some. Magnetite on shape of polygon and pillar was observed. In addition, it was confirmed that internal defects, impurities, and non-metallic interventions gradually decreased. In the future, it is necessary to investigate the metallurgical characteristic through material scientific analysis of hammer scale produced through restoration experiments using various raw material of iron, and compare them with those excavated from Iron manufacture ruins.

Parameter Optimization and Uncertainty Analysis of the Rainfall-Runoff Model Coupled with Hierarchical Bayesian Inference Scheme (Hierarchical Bayesian 기법을 통한 강우-유출모형 매개변수의 최적화 및 불확실성 분석)

  • Mun, Yeong-Il;Gwon, Hyeon-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1752-1756
    • /
    • 2007
  • 정교한 강우-유출 모의를 위해서는 적절한 매개변수의 추정이 필수적이며, 매개변수 추정 방법은 시행착오(trial and error)에 의한 수동보정법과 최적화방법을 사용한 자동보정법으로 구분할 수 있다. 모형의 매개변수의 수가 많은 경우 수동보정법에 의한 매개변수 추정은 매우 어렵다. 자동 보정법에 사용되는 최적화방법은 Rosenbrock 알고리즘, patten search, 컴플렉스(complex) 방법, Powell 방법 등과 같은 지역최적화 방법과 전역최적화 방법으로 나눌 수 있다. 그러나 기존 방법론들은 매개변수의 최적화를 추적하기 위한 알고리즘이 대부분이며 이들 매개변수에 관련된 불확실성을 평가하는데는 미흡한 단접이 있다. 이러한 점에서 본 연구에서는 강우-유출모형의 매개변수 추정에 있어서 불확실성을 평가할 수 있는 새로운 방법론을 검토하고자 한다. 매개변수와 관련된 불확실성을 평가하기 위한 방법은 여러 가지가 있으나 통계적으로 매우 우수한 능력을 보이는 Hierarchical Bayesian 알고리즘을 Probability-Distributed 강우-유출 모형에 적용하였다. 본 방법론은 최적화와 동시에 각 매개변수에 관련된 사후분포(posterior distribution)의 추정이 가능하므로 모형이 갖는 불확실성을 효과적으로 평가할 수 있다. 따라서, 수자원 관리에 있어서 불확실성을 고려할 수 있으므로 보다 수리수문학적 위험도를 저감할 수 있을 것으로 판단된다.

  • PDF

Analysis of Adaptive Multiuser Detector using the improved input Signal (개선된 입력 신호를 사용한 적응형 간섭 제거기에 관한 분석)

  • 염순진;염순진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.8A
    • /
    • pp.1198-1205
    • /
    • 2000
  • In this paper, we introduce a modified interference cancellation scheme to overcome MAI in DS-CDMA. Among ICs(Interference Cancellers), PIC(Parallel IC) requires the more complexity, and SIC(Successive IC) faces the problems of the long delay time. Most of all, the adaptive detector achieves the good BER performance using the adaptive Inter conducted iteration algorithm. So it requires many iterations. To resolve the problems of them, we propose an improved adaptive detector that the received signal removed MAI through the sorting scheme and the cancellation method are fed into the adaptive filter. Because the improved input signal is fed into the adaptive filter, it has the same BER performance only using smaller iterations than the conventional adaptive detector, and the proposed detector having adaptive filter requires less complexity than the other detectors.

  • PDF

A Study of Production Techniques of the Handles of Swords with Round Pommel Excavated from Jeollabuk-do Made in Before 6 Century (6세기 이전 제작된 전라북도 출토 소환두도의 병부(柄部) 제작기법 연구)

  • Lee, Young-Beom;Seo, Jeong-Ho
    • Journal of Conservation Science
    • /
    • v.25 no.1
    • /
    • pp.1-16
    • /
    • 2009
  • Jeollabuk-do is bounded by the sea, and Mahan Baekje culture have been established around a wide plain. Also, in southeastern, it was closed by Gaya kingdom where iron culture was prosperous at that time, a variety of the handles of swords with round pommel is excavated at present. The handles of swords with round pommel is the best amount of excavated objects among the swords with round pommel and producted object for the time. It supposes them to become the foundation of making the decorated swords with round pommel. But, the handles of swords with round pommel that don't have a pattern in handle is indifferent to study because the production method is simple in spite of that the value of archaeological data is sufficient. Therefore, in this study, it examined changed production techniques with the change of times concerning the handles of swords with round pommel of Mahan Baekje Gaya period(before 6C) excavated from Jeollabukdo through using X-rays in order to clarify a variety of production techniques of the handles of swords with round pommel correctly in accordance with a period of production and excavated place. As a result, identified production techniques using X-rays of the handles of swords with round pommel excavated around remains of Mahan Baekje Gaya period shows that production progress improved in order of all-in-one shape, hammer welding shape of the handle of round pommel, and two in body formation in accordance with age. Especially, in two in body shape, it products the handle of round pommel separately, after that it welds the handle of swords and then links the sword blade like a riveting or bottleneck and so on. Despite of improved hammer welding technique, the reason why it didn't utilize is it regards as inlay or gilt will be damaged. And it is judged by using riveting or bottleneck. Also, it appears to techniques of metal craft such as decoration of the handle, decoration of point of sword, inlay, and silver-plating in the period of appearing two in body shape. As clarifying correctly, it provides fundamental database of scientific research about a study of production techniques of handle of swords with round pommel.

  • PDF

A Study on the Metallurgical Characteristics for Sand Iron Ingot Reproduced by the Traditional Iron-making Method on Ancient Period under the Neutron Imaging Analysis (중성자 영상 분석을 활용한 고대 제철법 재현 사철강괴의 금속학적 특성 연구)

  • Cho, Sung Mo;Kim, Jong Yul;Sato, Hirotaka;Kim, TaeJoo;Cho, Nam Chul
    • Journal of Conservation Science
    • /
    • v.35 no.6
    • /
    • pp.631-640
    • /
    • 2019
  • The purpose of this study was to compare analytical results of sand iron bars reproduced by the traditional iron-making method through a destructive analysis and a non-destructive analysis. For these studies, we produced two types of samples. One was sample(SI-A), a part of the sand iron bar for destructive analysis. The other was SI-B(9 ㎠) for non-destructive analysis. A metallurgical microscope and scanning electron microscope were used for the destructive analysis, and neutron imaging analysis with the Hokkaido University Neutron Source (HUNS) at Hokkaido University, Japan, was used for the non-destructive analysis. The results obtained by destructive analysis showed that there was ferrite and pearlite of fine crystallite size, and some of these showed Widmanstätten ferrite microstructure grown within the pearlite and coarse ferrite at the edge of the specimen. The results from the neutron imaging analysis showed that there was also ferrite and pearlite with 3 ㎛ α-Fe of BCC structure. Based on these results, neutron imaging analysis is capable of identifying material characteristics without destroying the object and obtaining optimal research results when applying it to objects of cultural heritage.

Material Characteristic of Slags and Iron Bloom Produced by Smelting Process Using Sand Iron (사철 제련을 통해 생산된 슬래그와 괴련철의 재료과학적 특성 비교)

  • Cho, Sung Mo;Cho, Hyun Kyung;Kwon, In Cheol;Cho, Nam Chul
    • Journal of Conservation Science
    • /
    • v.34 no.1
    • /
    • pp.39-50
    • /
    • 2018
  • This study replicated traditional smelting methods to produce iron blooms from sand iron. The metallurgical properties of the slag and the iron blooms were analyzed. The sand iron materials used in the smelting experiments, which were based on ancient documents, were collected from Gyeong-Ju and Pohang. Analysis by WD-XRF and XRD showed that Gyeong-Ju's sand iron contains a high-titanium, with magnetite, and Pohang's sand iron contains a low-titanium, which magnetite and ilmenite were mixed. Analysis of the slag with XRD, and the micro-structure with metal microscopes and SEM-EDS, confirmed that the major compounds in the slag of the Gyeong-Ju's sand iron were fayalite and $w\ddot{u}stite$, and those in the slag of the Pohang's sand iron were titanomagnetite and fayalite. The differences in the main constituents were confirmed according to the Ti quantity. Finally, we observed the microstructures of the iron blooms. In the case of the iron bloom produced from Gyeong-Ju's sand iron, the outside was found to be dominantly a pearlite of eutectoid steel, while the inside was a hypo-eutectoid steel where ferrite and pearlite were mixed together. While, the major component of the iron bloom produced from Pohang's sand iron was ferrite, which is almost like pure iron. However, there were many impurities inside the iron blooms. Therefore, this experiment confirmed that making ironware required a process that involved removing internal impurities, refining, and welding. It will be an important data to identify the characteristics of iron by-products and the site through traditional iron-making experiments under various conditions.

A Material Characteristic Study on the Sword with an Undecorated Ring Pommel of the Ancient Tombs of Jeongchon, Bogam-Ri, Naju (나주 복암리 정촌고분 출토 소환두도의 재료학적 특성)

  • Lee, Hyeyoun
    • Korean Journal of Heritage: History & Science
    • /
    • v.52 no.3
    • /
    • pp.160-171
    • /
    • 2019
  • The sword with a ring pommel, which was excavated from the first stone chamber of the ancient tombs of Jeongchon Village in Naju, is a sword with a pentagon undecorated ring pommel consisting of a mother sword and two child swords. The sword with an undecorated ring pommel of Jeongchon comprises a ring pommel, a hilt, a knife, and a knife end decoration. This sword was coated with lacquer. The ring pommel is an iron frame covered with silver plate; however the silver tarnished into a light purple due to silver chloride corrosion, and iron corrosion originated from the inside is visible on the surface. Silver chloride corrosion is produced when silver objects are exposed to water, dissolved salts, and dissolved chloride ions when in a buried state. It changes objects into powder, making it difficult to preserve original shapes. The other silver artifacts found in the Jeongchon ancient tombs show similar signs of corrosion. The results of X-ray irradiation and a CT analysis showed that the sword had a ring at the end of the handle, a T-shaped hilt, and was probably connected to the handle end of a knife. If the shape of the mother sword can be inferred from the child swords, the mother sword had a ring pommel, decorations of the handle, covered with silver plate, and a gold ring and a silver line wound around the handle. It is assumed that the ring pommel was connected to the knife by welding because no holes were observed. The end decoration of the knife was made by using an iron plate formed into a shape, half covered by silk, and the other half decorated with silver plate and a gold ring. The sword with an undecorated ring pommel excavated from the ancient tombs of Jeongchon Village comprises the metals of gold, silver, and iron, and includes features of Baekje, Silla, and Gaya, which highlights the influence of surrounding historic sites and various cultures.