• Title/Summary/Keyword: 단일 탭 등화 기법

Search Result 11, Processing Time 0.023 seconds

Performance Analysis of MMSE-Based Equalization of IMT-Advanced System in Time-Varing Channels (IMT-Advanced 시스템의 시변 채널에서의 MMSE 기반 등화 성능 분석)

  • Park, Sung-Joon
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.4
    • /
    • pp.91-96
    • /
    • 2011
  • As the user's demand for ultra high-speed wireless internet has increased, the standardization, research and development of future mobile communication systems have been done for several years. IMT-Advanced system which is called fourth generation mobile communication should support the data rate of 1 Gbps for nomadic users and 100 Mbps for mobile users. Also, the system should hold call connection at the mobile speed of 350 km/h. Meanwhile, since Doppler spread is linearly proportional to mobile speed, high mobility leads to the increase of interference between subcarriers and the deterioration of detection performance consequently. In this paper, we evaluate and analyze detection probability with respect to equalization methods in time-varying channels under system parameters complying with IMT-Advanced requirements. According to computer simulation conducted by varying mobile speed and code rate, MMSE based equalization can mitigate performance degradation of IMT-Advanced system considerably in time-varying channels.

Design and Performance Analysis of the Efficient Equalization Method for OFDM system using QAM in multipath fading channel (다중경로 페이딩 채널에서 QAM을 사용하는 OFDM시스템의 효율적인 등화기법 설계 및 성능분석)

  • 남성식;백인기;조성호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.6B
    • /
    • pp.1082-1091
    • /
    • 2000
  • In this paper, the efficient equalization method for OFDM(Orthogonal Frequency Division Multiflexing) System using the QAM(Quadrature Amplitude Modulation) in multipath fading channel is proposed in order to faster and more efficiently equalize the received signals that are sent over real channel. In generally, the one-tap linear equalizers have been used in the frequency-domain as the existing equalization method for OFDM system. In this technique, if characteristics of the channel are changed fast, the one-tap linear equalizers cannot compensate for the distortion due to time variant multipath channels. Therefore, in this paper, we use one-tap non-linear equalizers instead of using one-tap linear equalizers in the frequency-domain, and also use the linear equalizer in the time-domain to compensate the rapid performance reduction at the low SNR(Signal-to-Noise Ratio) that is the disadvantage of the non-linear equalizer. In the frequency-domain, when QAM signals, consisting of in-phase components and quadrature (out-phase) components, are sent over the complex channel, the only in-phase and quadrature components of signals distorted by the multipath fading are changed the same as signals distorted by the noise. So the cross components are canceled in the frequency-domain equalizer. The time-domain equalizer and the adaptive algorithm that has lower-error probability and fast convergence speed are applied to compensate for the error that is caused by canceling the cross components in the frequency-domain equalizer. In the time-domain, To compensate for the performance of frequency-domain equalizer the time-domain equalizes the distorted signals at a frame by using the Gold-code as a training sequence in the receiver after the Gold-codes are inserted into the guard signal in the transmitter. By using the proposed equalization method, we can achieve faster and more efficient equalization method that has the reduced computational complexity and improved performance.

  • PDF

A Study of Iterative Channel Estimation and Equalization Scheme of FBMC/OQAM in a Frequency Oversampling Domain (FBMC/OQAM 시스템의 주파수 과표본 영역에서의 반복적인 채널 추정 및 등화 기법에 관한 연구)

  • Won, YongJu;Oh, JongGyu;Lee, JinSeop;Kim, JoonTae
    • Journal of Broadcast Engineering
    • /
    • v.21 no.3
    • /
    • pp.391-403
    • /
    • 2016
  • FBMC/OQAM(Filterbank multicarrier on offset-Quadrature Amplitude Modulation) system is a multicarrier modulation which is not need to use cyclic prefix(CP). The CP of OFDM/QAM (orthogonal frequency division multiplexing on Quadrature Amplitude Modulation) system decreases data transmission rate. However, SER(symbol error rate) performance of FBMC/OQAM system is worse than OFDM/QAM system with frequency 1-tap equalization scheme in the frequency selective channel. In this paper, an iterative channel estimation and equalization scheme is performed in a frequency oversampling domain about each sub-channel of FBMC/OQAM system and SER performance using computer simulation is shown. Using the proposed scheme, the SER performance approaches to that of OFDM/QAM system in a frequency selective channel.

Study on Common Phase Offset Tracking Scheme for Single Carrier System with Frequency Domain Equalization (단일 반송파 주파수 영역 등화 시스템을 위한 공통 위상 추적 기법 연구)

  • Kim, Young-Je;Park, Jong-Hun;Cho, Jung-Il;Cho, Hyung-Weon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.11C
    • /
    • pp.641-648
    • /
    • 2011
  • Frequency domain equalization is the most promising technology that has relatively low complexity in multipath channel. A frame of single carrier system with frequency domain equalization (SC-FDE) has cyclic prefix to mitigate effect of delay spread. After synchronization and equalization procedure on the SC-FDE system, common phase offset (CPO) that can introduce performance degradation caused by phase mismatch between transmitter and receiver oscillators is remained. In this paper, common phase offset tracking in frequency domain is proposed. To track CPO, constant amplitude zero autocorrelation code sequence as training sequence is adopted. By using numerical results, performance of mean square error is evaluated. The results show that MSE of CPO has similar performance compare to the time-domain estimation and there is no need of domain conversion.

Performance Analysis of Equalizer for Next Generation DSRC with OFDM System (OFDM 방식의 차세대 단거리 전용통신시스템에서 등화기의 성능 분석)

  • Kim Man-Ho;Kang Heau-Jo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.145-148
    • /
    • 2006
  • 본 논문에서는 지능형 교통망 시스템 서비스에 사용되는 5.8GHz 대역에서 OFDM을 이용한 단거리 전용 통신 시스템을 제안하고 제안 시스템의 성능을 평가하고 이를 분석하였다. 무선 다중경로 채널에서 데이터를 고속으로 전송할 경우, 신호는 페이딩, ISI(inter-symbol interference) 등의 영향으로 높은 에러율을 가지게 된다. OFDM 방식은 보호구간을 사용해 채널의 ISI를 제거하므로 일반적으로 등화가가 필요 없으나, OFDM 각 심볼 주기마다 보호구간의 사용은 채널 사용 면에서 매우 비효율적이 된다. 따라서 채널의 지연화산이 커질 경우, 보호구간만으로는 ISI를 완전히 제거할 수 없으며, 성능 개선을 위하여 등화기가 필요하게 된다. 본 논문에서 제안된 시스템에서는 ITS 권고 주파수 대역인 5.8GHz에서 국제 표준화 규격인 IEEE 802.11a 근거하여 OFDM 시스템을 모델링 하였으며, 단일 탭 등화기를 적용하여 제안 시스템을 시뮬레이터 기법에 의하여 성능을 비교 분석하였다.

  • PDF

Single Carrier Frequency Domain Equalization in 3-slot Based Amplify-and-Forward Relaying Network for Shadow Area (음영 지역을 위한 3-슬롯 기반의 AF 방식 중계기 네트워크에서의 단일 반송파 주파수 대역 등화 기법)

  • Won, Hui-Chul
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.7
    • /
    • pp.9-16
    • /
    • 2012
  • In order to extend cell coverage and to cope with shadow areas, a relay-assisted wireless communications system has been widely studied. In this paper, we propose new equalization method for single carrier (SC) frequency domain equalizer (FDE) in amplify-and-forward (AF) relaying multi-path networks to improve the performance at shadow areas. The performance of SC-FDE system in 3-slot based multi-path networks can be improved considerably with the diversity gain which we obtain by equalizing the combined signal from relays by means of the minimum mean square error (MMSE) criteria. We find the weighting coefficients of maximum ratio combining (MRC) and the tap coefficients of MMSE equalizer for SC-FDE in AF relaying multi-path networks. Simulation results show that the proposed system considerably outperforms the conventional SC-FDE system.

8VSB Equalization Techniques for the Performance Improvement of Indoor Reception (실내 수신 성능 개선을 위한 8VSB의 등화 기법)

  • 김대진;박성우;이종주;전희영;이동두;박재홍
    • Journal of Broadcast Engineering
    • /
    • v.4 no.2
    • /
    • pp.103-118
    • /
    • 1999
  • This paper analyzes the performance of symbol timing recovery and equalizer in 8VSB digital terrestrial TV receiver under various multipath signals and proposes equalization techniques which improve indoor reception performance. Data segment sync is used for symbol timing recovery and timing offset is measured for echoes of various delays and amplitudes by using symbol timing detection filter whose pattern is +1. +1. -1. and -1. Measured timing offsets were below 10% for long echoes with more than 5 symbol delay and above 30% for short echoes with around 1 symbol delay. Indoor reception is always more challenging than outdoor reception due to lower signal strength. large and short multipaths. and moving interfering objects. So it is considered to use FSE (Fractionally Spaced Equalizer) which is very robust to timing offset and blind equalizer which can update equalizer tap coefficients even by information data. We compare the performance of conventional DFE (Decision Feedback Equalizer) and FSE-DFE using LMS algorithm and Stop and Go algorithm for the indoor reception. Experiments reveals FSE has excellent performance for large timing offset and Stop and Go algorithm shows good performance for Doppler shift. so we propose to use FSE-DFE structure with Stop and Go algorithm for the reliable indoor reception.

  • PDF

A Novel Channel Compensation and Equalization scheme for an OFDM Based Modem (OFDM 전송시스템의 새로운 채널 보상 및 등화 기법)

  • Seo, Jung-Hyun;Lee, Hyun;Cheong, Cha-Keon;Cho, Kyoung-Rok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.12A
    • /
    • pp.1009-1018
    • /
    • 2003
  • A new fading channel estimation technique is proposed for an OFDM based modem In the ITS system. The algorithm is based on the transfer function extraction of the channel using the pilot signals and compensated the channel preceding the equalization. The newly derived algorithm is division-free arithmetic operations allows the faster circuit operation and the smaller circuit size. Proposed techniques compensate firstly the distortion which is generated at fading channels and secondly eliminate inter-symbol interference. All algorithms are suitability estimated and improved for a system implementation using digital circuits. As the results, the circuit size is reduced by 20% of the conventional design and achieved about 10% performance improvement at low SNR under 10dB in case of ITS system adapted 16-QAM mode.

Performance analysis of a MC-CDMA cellular system with antenna arrays in a fading channel (페이딩 채널 환경에서 안테나 어래이를 갖는 MC-CDMA 셀룰라 시스템의 성능 분석)

  • 김찬규;조용수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.12
    • /
    • pp.2686-2695
    • /
    • 1997
  • The MC-CDMA(multi-carrier code division multiple access) technique is known to be appropriate for high data-rate wireless communications such as mobile multimedia communication due to its robustness to multipath fading and its capability of handing high data rates with a simple one-tap equalizer. In this paepr, the performance of a MC-CDMA cellular system employing antenna arrays at the based station in a fading channel is presented. It is whown that the interference from other users within the cell can be significantly reduced for both reverse link (mobile to base station) and forward link (base station to mobile) using a MC-CDMA with antenna arrays, thus incresig the system's user-capacity. Computer simulations that demonstrate user-capacity improvement of the proposed approach are discussed.

  • PDF

Performance analysis of an MC-CDMA system by using an adaptive beamforming technique (적응 빔 형성 기법을 사용한 MC-CDMA 시스템의 성능분석)

  • 김찬규;조용수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.10A
    • /
    • pp.1471-1479
    • /
    • 1999
  • This paper presents an adaptive beamforming algorithm for an MC-CDMA system with an adaptive array antenna. By employing an antenna array at the receiver of an MC-CDMA system, the performance of an MC-CDMA system, which is known to be effective for high data rate transmission due to its robustness to multipath fading and its simplicity for using a simple one-tap equalizer, is shown to be significantly improved. The proposed algorithm for adaptive beanforming in an MC-CDMA system is derived by (1) calculating the error signals between the pilot symbols of desired user and the received pilot signals in frequency domain, (2) transforming the frequency-domain error signals into time-domain error signals, (3) updating the filter coefficients of the adaptive beamformer in the direction of minimizing the MSE. Convergence behavior and performance improvement of the proposed approach are demonstrated through computer simulation by applying it to the conventional MC-CDMA system.

  • PDF