• Title/Summary/Keyword: 단일 카메라

Search Result 427, Processing Time 0.026 seconds

Mobile Camera-Based Positioning Method by Applying Landmark Corner Extraction (랜드마크 코너 추출을 적용한 모바일 카메라 기반 위치결정 기법)

  • Yoo Jin Lee;Wansang Yoon;Sooahm Rhee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1309-1320
    • /
    • 2023
  • The technological development and popularization of mobile devices have developed so that users can check their location anywhere and use the Internet. However, in the case of indoors, the Internet can be used smoothly, but the global positioning system (GPS) function is difficult to use. There is an increasing need to provide real-time location information in shaded areas where GPS is not received, such as department stores, museums, conference halls, schools, and tunnels, which are indoor public places. Accordingly, research on the recent indoor positioning technology based on light detection and ranging (LiDAR) equipment is increasing to build a landmark database. Focusing on the accessibility of building a landmark database, this study attempted to develop a technique for estimating the user's location by using a single image taken of a landmark based on a mobile device and the landmark database information constructed in advance. First, a landmark database was constructed. In order to estimate the user's location only with the mobile image photographing the landmark, it is essential to detect the landmark from the mobile image, and to acquire the ground coordinates of the points with fixed characteristics from the detected landmark. In the second step, by applying the bag of words (BoW) image search technology, the landmark photographed by the mobile image among the landmark database was searched up to a similar 4th place. In the third step, one of the four candidate landmarks searched through the scale invariant feature transform (SIFT) feature point extraction technique and Homography random sample consensus(RANSAC) was selected, and at this time, filtering was performed once more based on the number of matching points through threshold setting. In the fourth step, the landmark image was projected onto the mobile image through the Homography matrix between the corresponding landmark and the mobile image to detect the area of the landmark and the corner. Finally, the user's location was estimated through the location estimation technique. As a result of analyzing the performance of the technology, the landmark search performance was measured to be about 86%. As a result of comparing the location estimation result with the user's actual ground coordinate, it was confirmed that it had a horizontal location accuracy of about 0.56 m, and it was confirmed that the user's location could be estimated with a mobile image by constructing a landmark database without separate expensive equipment.

Gallbladder Ejection Fraction Using $^{99m}Tc$-DISIDA Scan in Diabetic Autonomic Neuropathy (당뇨병성 자율 신경병증에서 $^{99m}Tc$-DISIDA를 이용한 담낭 배출율에 관한 연구)

  • Kim, Seong-Jang;Kim, In-Ju;Kim, Yong-Ki;An, Jun-Hyup;Yoo, Seok-Dong
    • The Korean Journal of Nuclear Medicine
    • /
    • v.34 no.1
    • /
    • pp.55-61
    • /
    • 2000
  • Purpose: We performed this study to evaluate the changes of gallbladder ejection fraction (GBEF) in diabetic patients with or without autonomic neuropathy. Materials and Methods: This study included 37 diabetic patients (25 women, 12 men, mean age 51 years) and 24 normal controls (10 women, 14 men, mean age 38 years). After intravenous injection of 185 MBq of $^{99m}Tc$-DISIDA, serial anterior abdominal images were acquired before and after fatty meal. Regions of interest were applied on gallbladder and right hepatic lobe on 60 and 90 minute images to calculate GBEF. Results: GBEF was significantly reduced in diabetes with autonomic neuropathy ($43{\pm}12.3%$) and without autonomic neuropathy ($57.5{\pm}13.2%$) compared with normal controls ($68{\pm}11.6%$, p<0.05). And also, GBEF was significantly reduced in diabetes with autonomic neuropathy compared with diabetes without autonomic neuropathy (p<0.05). Fasting blood glucose level, age, sex, hemoglobin Alc, body mass index, serum lipid level were not different in these two diabetic patient groups (p>0.05). When 50.2% of GBEF was used as the criteria for diabetic autonomic neuropathy, the sensitivity and specificity were 80%, 76.5%, respectively. The area under receiver operating characteristic curve was 0.846. Conclusion: GBEF of diabetic patients with autonomic neuropathy was significantly reduced than that of diabetic patients without autonomic neuropathy.

  • PDF

The Usefulness of LEUR Collimator for 1-Day Basal/Acetazolamide Brain Perfusion SPECT (1-Day Protocol을 사용하는 Brain Perfusion SPECT에서 LEUR 콜리메이터의 유용성)

  • Choi, Jin-Wook;Kim, Soo-Mee;Lee, Hyung-Jin;Kim, Jin-Eui;Kim, Hyun-Joo;Lee, Jae-Sung;Lee, Dong-Soo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.94-100
    • /
    • 2011
  • Purpose: Basal/Acetazolamide-challenged brain perfusion SPECT is very useful to assess cerebral perfusion and vascular reserve. However, as there is a trade off between sensitivity and spatial resolution in the selection of collimator, the selection of optimal collimator is crucial. In this study, we examined three collimators to select optimal one for 1-day brain perfusion SPECT. Materials and Methods: Three collimators, low energy high resolution-parallel beam (LEHR-par), ultra resolution-fan beam (LEUR-fan) and super fine-fan beam (LESFR-fan), were tested for 1-day imaging using Triad XLT 9 (TRIONIX). The SPECT images of Hoffman 3D brain phantom filled with 99mTc of 170 MBq and a normal volunteer were acquired with a protocol of 50 kcts/frame and detector rotation of 3 degree. Filterd backprojection (FBP) reconstruction with Butterworth filter (cut off frequencies, 0.3 to 0.5) was performed. The quantitative and qualitative assessments for three collimators were performed. Results: The blind tests showed that LESFR-fan provided the best image quality for Hoffman brain phantom and the volunteer. However, images for all the collimator were evaluated as 'acceptable'. On the other hand, in order to meet the equivalent signal-to-noise ratio (SNR), total acquisition time or radioactivity dose for LESFR-fan must have been increased up to almost twice of that for LEUR-fan and LEHR-par. The volunteer test indicated that total acquisition time could be reduced approximately by 10 to 14 min in clinical practice using LEUR-fan and LEHR-par without significant loss on image quality, in comparison with LESFR-fan. Conclusion: Although LESFR-fan provides the best image quality, it requires significantly more acquisition time than LEUR-fan and LEHR-par to provide reasonable SNR. Since there is no significant clinical difference between three collimators, LEUR-fan and LEHR-par can be recommended as optimal collimators for 1-day brain perfusion imaging with respect to image quality and SNR.

  • PDF

Diagnosis of Coronary Artery Disease using Myocardial Perfusion SPECT in Patients with Diabetes Mellitus: Analysis of Risk Factors (당뇨병 환자에서 심근관류 SPECT을 이용한 관동맥질환의 진단: 위험인자 분석)

  • Seo, Ji-Hyoung;Kang, Seong-Min;Bae, Jin-Ho;Jeong, Shin-Young;Lee, Sang-Woo;Yoo, Jeong-Soo;Ahn, Byeong-Cheol;Lee, Jae-Tae
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.3
    • /
    • pp.155-162
    • /
    • 2006
  • Purpose: Diabetes mellitus (DM) is a critical disease with higher rates of cardiovascular morbidity and mortality due to myocardial ischemia and infarction. There is glowing interest in how to determine high-risk patients who are candidates for screening testing. This study was performed to evaluate the incidence of coronary artery disease (CAD) in diabetic patients detected by Tc-99m MIBI myocardial perfusion SPECT (MPS) and to assess risk factors of CAD and cardiac hard events. Subjects and Methods: 203 diabetic patients (64 male, mean age $64.1{\pm}9.0$ years) who underwent MPS were included between Jan 2000 and July 2004. Cardiac death and nonfatal myocardial infarction (MI) were considered as hard events, and coronary angioplasty and bypass surgery >60 days after testing were considered as soft events. The mean follow-up period was $36{\pm}18$ months. Patients underwent exercise (n=6) or adenosine stress (n=197) myocardial perfusion SPECT. Results: Perfusion defects on MPS were detected in 28.6% (58/203) of the patients. There was no cardiac death but 11 hard events were observed. The annual cardiac hard event rate was 1.1%. In univariate analysis of clinical factors, typical anginal pain, peripheral vascular disease, peripheral polyneuropathy, and resting ECG abnormality were significantly associated with the ocurrence of hard events. Anginal pain, peripheral vascular disease, and resting ECG abnormality remained independent predictors of nonfatal MIs with multivariate analysis. Abnormal SPECT results were significantly associated with high prevalence of hard events but not independent predictors on uni- and multivariate analyses. Conclusion: Patients who were male, had longer diabetes duration (especially over 20 years), peripheral vascular disease, peripheral polyneuropathy, or resting ECG abnormality had higher incidence of CAD. Among clinical factors in diabetic patients, typical angina, peripheral vascular disease, peripheral polyneuropathy, and resting ECG abnormality were strong predictors of hard events.

Dynamic Characteristics for the Model of Horn Fish Hemiramphus Sajor Surface Pair Trawl Gear (학공치 표층예망어구 모형의 운동특성)

  • 김석종
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.4
    • /
    • pp.285-295
    • /
    • 2001
  • This study describes the analysis on the dynamic characteristics of model as a fundamental studies for the horn fish Hemiramphus sajor surface pair trawl gear. The model experiments were carried out in a flume tank by using model net for the horn fish surface par trawl gear. The model net was made to the scale of 1/40 by scaling down two surfce par trawl boats of 6.67 and 9.98 ton used for sea experiment in the coast of Jeju Island. Dimensions of the model net were 1.2m for stretch length of net, 1.3m for float line, 1.0m for sinker line, 2.5g for floats, and 0.86g for sinkers. Experiments were conducted in the observation channel of a flume tank with experimental equipments used to change the distance between paired boats and towing velocity. Motion of model net during towing was recorded by two sets of digital camera which were placed in the top and side of the model net. The leading coordinate of net height and net mouth width was captured by the photograph analysis system. Through the experiment, we obtained the following results: 1. The relationship between the net hight(Nh) and towing velocity(Vt) during towing was found to be Nh=(2.39Db-$^{0.62})Vt^{0.56}$ and the relationship between the net mouth width (Nw) and towing velocity during towing was Nw=(0.96Db^{0.62})Vt^{0.11}$, where Db is the distance between paired boats. 2. The relationship between the net tension(Nt) and towing velocity during towing was found to be Nt=106.94Vt+1.43 and the model net becomes parallel to the water surface at the towing velocity larger than 1.5 Knot. 3. The relationship between the net opening area(Na) and towing velocity during towing was found to be Na=(2.28Db0.37)Vt.-0.45, and the relationship between the filtering volume(Fv) and towing velocity during towing was Fv=(69.9Db$^{0.37})Vt^{0.55}$. The net opening area and filtering volume reach maximum value at the distance of 25m between paired boats.

  • PDF

The effects of physical factors in SPECT (물리적 요소가 SPECT 영상에 미치는 영향)

  • 손혜경;김희중;나상균;이희경
    • Progress in Medical Physics
    • /
    • v.7 no.1
    • /
    • pp.65-77
    • /
    • 1996
  • Using the 2-D and 3-D Hoffman brain phantom, 3-D Jaszczak phantom and Single Photon Emission Computed Tomography, the effects of data acquisition parameter, attenuation, noise, scatter and reconstruction algorithm on image quantitation as well as image quality were studied. For the data acquisition parameters, the images were acquired by changing the increment angle of rotation and the radius. The less increment angle of rotation resulted in superior image quality. Smaller radius from the center of rotation gave better image quality, since the resolution degraded as increasing the distance from detector to object increased. Using the flood data in Jaszczak phantom, the optimal attenuation coefficients were derived as 0.12cm$\^$-1/ for all collimators. Consequently, the all images were corrected for attenuation using the derived attenuation coefficients. It showed concave line profile without attenuation correction and flat line profile with attenuation correction in flood data obtained with jaszczak phantom. And the attenuation correction improved both image qulity and image quantitation. To study the effects of noise, the images were acquired for 1min, 2min, 5min, 10min, and 20min. The 20min image showed much better noise characteristics than 1min image indicating that increasing the counting time reduces the noise characteristics which follow the Poisson distribution. The images were also acquired using dual-energy windows, one for main photopeak and another one for scatter peak. The images were then compared with and without scatter correction. Scatter correction improved image quality so that the cold sphere and bar pattern in Jaszczak phantom were clearly visualized. Scatter correction was also applied to 3-D Hoffman brain phantom and resulted in better image quality. In conclusion, the SPECT images were significantly affected by the factors of data acquisition parameter, attenuation, noise, scatter, and reconstruction algorithm and these factors must be optimized or corrected to obtain the useful SPECT data in clinical applications.

  • PDF

3D Histology Using the Synchrotron Radiation Propagation Phase Contrast Cryo-microCT (방사광 전파위상대조 동결미세단층촬영법을 활용한 3차원 조직학)

  • Kim, Ju-Heon;Han, Sung-Mi;Song, Hyun-Ouk;Seo, Youn-Kyung;Moon, Young-Suk;Kim, Hong-Tae
    • Anatomy & Biological Anthropology
    • /
    • v.31 no.4
    • /
    • pp.133-142
    • /
    • 2018
  • 3D histology is a imaging system for the 3D structural information of cells or tissues. The synchrotron radiation propagation phase contrast micro-CT has been used in 3D imaging methods. However, the simple phase contrast micro-CT did not give sufficient micro-structural information when the specimen contains soft elements, as is the case with many biomedical tissue samples. The purpose of this study is to develop a new technique to enhance the phase contrast effect for soft tissue imaging. Experiments were performed at the imaging beam lines of Pohang Accelerator Laboratory (PAL). The biomedical tissue samples under frozen state was mounted on a computer-controlled precision stage and rotated in $0.18^{\circ}$ increments through $180^{\circ}$. An X-ray shadow of a specimen was converted into a visual image on the surface of a CdWO4 scintillator that was magnified using a microscopic objective lens(X5 or X20) before being captured with a digital CCD camera. 3-dimensional volume images of the specimen were obtained by applying a filtered back-projection algorithm to the projection images using a software package OCTOPUS. Surface reconstruction and volume segmentation and rendering were performed were performed using Amira software. In this study, We found that synchrotron phase contrast imaging of frozen tissue samples has higher contrast power for soft tissue than that of non-frozen samples. In conclusion, synchrotron radiation propagation phase contrast cryo-microCT imaging offers a promising tool for non-destructive high resolution 3D histology.