• Title/Summary/Keyword: 단일 관입상

Search Result 12, Processing Time 0.023 seconds

Pattern and Origin of the Rhyolitic Dike Swarm, Northeastern Cheongsong, Korea (청송 북동부 유문암질 암맥군의 패턴과 성인)

  • Hwang, Sang Koo;Kwon, Tae Ho;Seo, Seung Hwan
    • The Journal of the Petrological Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.91-105
    • /
    • 2015
  • Jungtaesan and Galpyeongji intrusions in the northeastern Cheongsong occur as laccolith and stock which intrude Gasongdong Formation and Dogyedong Formation, respectively. Cheongsong dike swarm, intruding the Dogyedong Formation, is closely associated with this stock. The dike swarm is more radial to focus into Galpyeongji and its outline is oval. The dikes of the dike swarm are only rhyolite dikes with flow banded, spherulitic and rare stony structures, and represents a single intrusive phase of magma. It can be interpretated that orientation of the dikes is controlled by stress states. Therefore, the dikes display a radial pattern through occupying vertical joints that have been generally attributed to radial fractures formed during doming of the sedimentary rocks by the intrusion of the Galpyeongji stock. The dike pattern could sufficiently account for dike injections into these joints.

Interpretation of High-resolution Seismic Data in the Middle Part of the Pungam Basin, Korea (풍암분지 중부지역의 고해상도 탄성파자료 해석)

  • Kim, Gi Yeong;Heo, Sik
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.3
    • /
    • pp.201-208
    • /
    • 1999
  • A high-resolution seismic profile acquired across the middle part of the Pungam Basin, one of the Cretaceous sedimentary basins in Korea, has been interpreted to delineate subsurface geological structures. Boundary faults, intrusive bodies, and unconformity surfaces are identified on the seismic section. Basin fills are divided into five depositional units (Units I, II, III, IV, and V in descending order). The normal faults were formed by transtentional movement along a sinistral strike-slip fault zone. Unconsolidated sediments, a weathered layer, and sedimentary layers overly the Precambrian gneiss. The granite body intruded at the southeastern part contacts the adjacent sedimentary rocks by a near-vertical fault. Granitic intrusions caused tectonic fractures and normal faults of various sizes. An andesitic intrusive body indicates post-depositional magmatic intrusions. Continuous strike-slip movements have deformed basin-filling sediments (Units I and II).

  • PDF

Geochemical characteristics of Ogcheon granite in Ogcheon area (옥천화강암의 지구화학적 특성)

  • 윤현수;김대업;박석환
    • The Journal of the Petrological Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.81-91
    • /
    • 1999
  • The area of the study is located in Ogcheon district, middle part of Ogcheon Fold Belt. The area is covered by metasedimentary rocks of Ogcheon Supergroup at northern, eastern and southern part. Jurassic Ogcheon granite which intruded into Ogcheon Supergroup at central part, was intruded by Cretaceous quartz porphyry at western part. The granite consists of quartz, plagioclase, alkali feldspar, biotite, sphene, apatite, epidote, opaque and so on. It is generally characterized by grey to light grey, medium-grained, mafic enclave and partly weak foliation. In terms of geochmical compositions, the granite is felsic, peraluminous, subalkaline and calc-alkaline, and it was differentiated from single granitic magma. It shows parallel LREE enrichment and HREE depletion patterns with 0.84 Eu negative anomaly, which has REE variation trend and anomaly value similar to Jurassic granites in Korea. From charactristics of petrology, mineralogy and geochmistry, it may be interpreted that the Ogcheon granite body was derived from melting of I-type crustal material related to syn-collisional tectonic setting and emplaced more or less rapidly into the Ogcheon Supergroup.

  • PDF

Mesozoic Gold-Silver Mineralization in South Korea: Metallogenic Provinces Reestimated to the Geodynamic Setting (남한의 중생대 금-은광화작용: 지구동력학적 관점에서 재검토된 금-은광상구)

  • Choi, Seon-Gyu;Park, Sang-Joon;Kim, Sung-Won;Kim, Chang-Seong;Oh, Chang-Whan
    • Economic and Environmental Geology
    • /
    • v.39 no.5 s.180
    • /
    • pp.567-581
    • /
    • 2006
  • The Au-Ag lode deposits in South Korea are closely associated with the Mesozoic granitoids. Namely, the Jurassic deposits formed in mesozonal environments related to deep-seated granitoids, whereas the Cretaceous ones were developed in porphyry-related environments related to subvolcanic granitoids. The time-space relationships of the Au-Ag lode deposits in South Korea are closely related to the changing plate motions during the Mesozoic. Most of the Jurassic auriferous deposits (about $165{\sim}145$ Ma) show fluid characteristics typical of an orogenic-type gold deposits, and were probably generated in a compressional to transpressional regime caused by an orthogonal to oblique convergence of the Izanagi Plate into the East Asian continental margin. On the other hand, strike-slip faults and caldera-related fractures together with subvolcanic activity are associated with major strike-slip faults reactivated by a northward (oblique) to northwestward (orthogonal) convergence, and probably have played an important role in the formation of the Cretaceous Au-Ag lode deposits (about $110{\sim}45$ Ma) under a continental arc setting. The temporal and spatial distinctions between the two typical Mesozoic deposit styles in South Korea probably reflect a different thermal episodes (i.e., late orogenic and post-orogenic) and ore-forming fluids related to different depths of emplacement of magma due to regional changes in tectonic environment.

Genetic Consideration of Sericite Deposits Derived from Granitic Rocks in the Taebaegsan Region (태백산지역에 분포하는 화강암체 기원 견운모광상의 성인적 고찰)

  • Yoo, Jang-Han;Chi, Sei-Jeong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.239-246
    • /
    • 2008
  • Yeongweol sericite deposit of Gangwon Province is regarded as one of the sericite deposits derived from granitic rocks due to post-magmatic alkali metasomatism, and the other sericite deposit of the same origin is the Daehyun mine of Gyungbug Province. Sericite ores were originated from leucocratic granitic stocks of Cambrian-Triassic age which intruded the pegmatitic migmatite of the unknown age and granite of the Pre-cambrian age, respectivcly. Jangsan quartzite of the lowermost formations of the Paleozoic era, which played as the capping rock protected from the leakage of the hydrothermal solution. It is well known that those sericite deposits arc formed during formation of the geosyncline, and they are also situated in the margins of the Hambaeg Syncline. Leucocratic granites commonly contain pegmatites with tourmaline crystals, and are rich in potassium feldspars, and sodium plagioclase as well. Sericitized ores are mainly found as we go up to the higher elevations or to the margins of the stocks. And some of the Highest grade sericite ores show the monominerallic character composed of nearly pure sericite probably doc to the ultra greisenization. Chemical analysis shows higher $Na_{2}O$ and $K_{2}O$ contents $(2.00\sim7.03wt%)$ as the sericitizations arc preceded and they represent obvious greisenization. But low CaO contents $(0.05\sim4.51wt%)$ indicate that albitizations are so weak. Pyrophyllite of the Youngweol area is often accompanied by the sericite, indicating rather stronger thermal effect than the Daehyun mine. It is known that there are several Sn deposits originated from greisenization in the Taebaegsan region. And greisens are inclined to contain W, Mo and several REE's such as Be, Nb and Li, and so Taebaegsan region interbedded with lots of carbonate formations are still worthwhile to survey for those metallic deposits.

Petrology and Amphibolites(Meta-Dolerite sill) in the Mungyong Areal Korea (문경지역에 분포하는 각섬암(변성조립현무암)에 대한 암석학적연구)

  • Ahn, Kun-Sang;Shin, In-Hyun;Kim, Hee-Nam
    • Journal of the Korean earth science society
    • /
    • v.18 no.6
    • /
    • pp.500-514
    • /
    • 1997
  • With respect to the amphibolites in the Mungyong area of the central part of the Ogcheon Fold Belt, detail field occurrence, texture and geochemical properties within each sills and petrogenetic environment are presented. We confirmed that the amphibolites in the Sangnaeri Formation (Ogcheon Supergroup) and limestone(Cambro-Ordovician Chosun Supergroup) sequences are metamorphosed dolerite sills which are roughly concordant to bedding of country rocks. Geologic distribution of the rocks is distinctly improved compared with those of previous investigations. There are four main sills so far observed in the study area. One is emplaced in limestone(Ls Sill, about 3 m thick) and the others are emplaced in Sangnaeri Formation, which are named First Sill(about 40 m thick), Second Sill(about 100 m thick) and Third Sill(about 40 m thick) from lower to upper horizons of the meta-pelitic sequences. The thick sills are intruded by minor sills and the Third Sill is a composite sill consisting of two main and two minor sills. Each sill has fine grained chilled marginal zones and grain size increases inwards from both contacts. The Second Sill has various vein and white patch in central part and the rock compositions vary systematically from margin to central part. $SiO_2,\;Na_2O,\;K_2O\;and\;P_2O_5$ increase, whereas $TiO_2,\;FeO,\;Al_2O_3\;and\;CaO$ decrease toward the contort. We investigate the major and trace element variations of ten selected rock compositions as intruding initial magma take occurrence and chemical properties into consideration. The compositional variations of them can not be explained by fractionation crystallization of single magma. Geologic distribution, geochemical properties and previous data suggest that amphibolite precursors(basaltic magma) of the study area were intrusive as sill-like in an intracontinental rift environment.

  • PDF

Geological Structures and Mineralization in the Yeongam Mineralized Zone, Korea (영암 광화대의 지질구조와 광화작용)

  • Ryoo, Chung-Ryul;Park, Seong-Weon;Lee, Hanyeang
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.1-15
    • /
    • 2014
  • The Yeongam mineralized zone is located in the southwestern part of the Korean peninsula, including the Sangeun, Eunjeok and Baramjai mines. This zone is located in the northeastern part of the Mokpo-Haenam-Yeongam volcanic circular structure. The 13 sites of quartz vein with mineralization are developed in the Sangeun-Eunjeok-Baramjai area, within rhyolitic welded tuff, showing N-S or NNW trend with highly dipping to the west. The quartz veins occur as a single vein or a bundle of veins with width of 1-5 cm in each. The existence of faults parallel to the quartz veins indicates that the faulting occurred before and after the development of quartz veins and mineralization. The quartz veins and mineralized zone are displaced by NW-trending sinistral strike-slip faults. The extension of the Sangeun-Eunjeok mineralized belt is traced to the south, following a NNW-trending tectonic line, and the Au-Ag contents are analysed in the 12 sites of quartz veins. Contents of gold and silver are 12.3 g/t and 1,380.0 g/t in Eunjeok mine, 2.7 g/t, 23.5g in Sangeun mine, and <0.1 g/t, 5.7 g/t in Baramjai mine respectively. Therefore, a highly Ag-Au mineralized zone is not developed in the southern part of the studied area.

Metallogeny on Gold-Silver in South Korea (남한(南韓)의 금(金)·은광화작용(銀鑛化作用)에 대(對)한 고찰(考察))

  • Kim, Won Jo
    • Economic and Environmental Geology
    • /
    • v.19 no.4
    • /
    • pp.243-264
    • /
    • 1986
  • This work is a metallogeny on gold-silver deposits in South Korea based on the close examination of the author's own data and a broad review of existing literature available. The metallogenic epochs in Korea are temporarily connected with the history of tectonism and igneous activities, and are identified as the Precambrian, Paleozoic, Jurassic to early Cretaceous, late Cretaceous to early Tertiary, and Quaternary epochs, whereas the metallogenic provinces are spatially associated with some of the felsic to intermediate igneous rocks, lacking mineralization related to basic and ultrabasic rocks. The metallogeny on the gold-silver deposits is mostly related to the granitic rocks intrusives. Epigenetic gold-silver mineralization in South Korea ranges in metallogenic epochs from Precambrian through Triassic, Jurassic and Cretaceous to Eocene (?), in genetic types from hypothermal through mesothermal and epithermal quartz-sulfide veins to volcanogenic stockworks, with some disseminated types. Reporting on metallic association from gold without silver, gold-silver, silver-gold, silver without gold, and gold or silver as a by-product from other metallic ores. The most representative genetic types and metal associations of gold-silver deposits are hydrothermal quartz veins associated with the Daebo and Bulgugsa granitic magmatism. The most closely associated paragenetic metallic minerals in gold-silver hydrothermal quartz-sulfide vein type deposits are: copper, lead, zinc, pyrite and arsenopyrite. More than 560 gold-silver mines are plotted in the distribution map grouped within the 10 different metallogenic provinces of South Korea. Specific mineralizations with related mineral association in both sulfides and gangues observed selected from 18 Korean and 8 Japanese Au-Ag deposits. The 7 selected individual gold-silver mines representing specific mineralization types are described in this report.

  • PDF

Mesozoic Granitoids and Associated Gold-Silver Mineralization in Korea (한국 중생대 화강암류와 이에 수반된 금-은광화작용)

  • 최선규;박상준;최상훈;신홍자
    • Economic and Environmental Geology
    • /
    • v.34 no.1
    • /
    • pp.25-38
    • /
    • 2001
  • Contrasts in the style of the gold-silver mineralization in geologic and tectonic settings in Korea, together with radiometric age data, reflect the genetically different nature of hydrothermal activities, coinciding with the emplacement age and depth of Mesozoic magmatic activities. It represents a clear distinction between the plutonic settings of the Jurassic Daebo orogeny and the subvolcanic environments of the Cretaceous Bulgugsa igneous activities. During the Daebo igneous activities (about 200-130 Ma) coincident with orogenic time, gold mineralization took place between 197 and 127 Ma. The Jurassic deposits commonly show several characteristics: prominent association with pegmatites, low Ag/Au ratios in the ore-concentrating parts, massive vein morphology and a distinctively simple mineralogy including Fe-rich sphalerite, galena, chalcopyrite, Au-rich eIectrum. pyrrhotite and/or pyrite. During the Bulgugsa igneous activities (120-60 Ma), the precious-metal deposits are generally characterized by such features as complex vein morphology, medium to high AgiAu ratios in the ore concentrates, and abundance of ore minerals including base-metal sulfides, Ag sulfides, native silver, Ag sulfosalts and Ag tellurides. Vein morphology, mineralogical, fluid inclusion and stable isotope results indicate the diverse genetic natures of hydrothermal systems. The Jurassic Au-dominant deposits were formed at the relatively high temperature (about 300 to 450$^{\circ}$C) and deep-crustal level (>3.0 kb) from the hydrothermal fluids containing more amounts of magmatic waters (3180; 5-10 %0). It can be explained by the dominant ore-depositing mechanisms as CO2 boiling and sulfidation, suggestive of hypo/mesothermal environments. In contrast, mineralization of the Cretaceous Au-Ag type (108-71 Ma) and Agdominant type (98-71 Ma) occurred at relatively low temperature (about 200 to 350$^{\circ}$C) and shallow-crustal level «1.0 kb) from the ore-fonning fluids containing more amounts of less-evolved meteoric waters (15180; -10-5%0). These characteristics of the Cretaceous precious-metal deposits can be attributed to the complexities in the ore-precipitating mechanisms (mixing, boiling, cooling), suggestive of epilmesothermal environments. Therefore, the differences of the emplacement depth between the Daebo and the Bulgugsa igneous activities directly influence the unique temporal and spatial association of the deposit type.

  • PDF

Geochemistry of Granites in the Southern Gimcheon Area of Korea (김천남부에 분포하는 화강암류의 지구화학)

  • 윤현수;홍세선
    • The Journal of the Petrological Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.16-31
    • /
    • 2003
  • The granites in the southern Gimcheon area can be divided into two parts, marginal hornblende biotite granodiorite (Mgd) and central biotite granodiorite to granite (Cgd). Mgd and Cgd are gray in color and display gradational contact relations and are mainly composed of coarse-grained and medium-grained rocks, respectively. Mgd has more frequent and larger mafic enclaves than Cgd, and the two granites partly show parallel foliation at thire contact with gneisses. From representative samples of the granites, K-Ar biotite ages of 197∼207 Ma were obtained. Considering the blocking temperature of biotite, it is suggested that the emplacement age of the granitic magma was probably late Triassic. The anorthite contents of plagioclases in Mgd display less variation than those of Cgd, indicating that Mgd crystallized within a narrow range of temperatures. In the Al$\_$total/-Mg diagram, the biotites from the granites plot within the subalkaline field, and the smooth slope indicates differentiation from a single magma. All amphiboles from the granites belong to magnesio-hornblende. The linear trends of major oxides, AFM and Ba-Sr-Rb indicate that Mgd and Cgd were fractionally differentiated from a single granitic magma body crystallizing from the margin inwards. The relations of modal (Qz+Af) vs. Op, K$_2$O vs. Na$_2$O, Fe$_2$ $O_3$ vs. FeO, Fe$\^$+3/(Fe$\^$+3/+Fe$\^$+2/) and K/Rb vs. Rb/Sr show that they belong to I-type and magnetite-series granitic rocks developed by the progressive melting products of fixed sources. REE data, normalized to chondrite value, have trends of enriched LREE and depleted HREE together with weakly negative Eu anomalies.