• Title/Summary/Keyword: 단일에너지 방사선

Search Result 70, Processing Time 0.022 seconds

Study on the calibration phantom and metal artifacts using virtual monochromatic images from dual energy CT (듀얼 에너지 CT의 가상 단색 영상을 이용한 영상 교정 팬텀과 금속 인공음영에 관한 연구)

  • Lee, Jun seong;Lee, Seung hoon;Park, Ju gyung;Lee, Sun young;Kim, Jin ki
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.1
    • /
    • pp.77-84
    • /
    • 2017
  • Purpose: To evaluate the image quality improvement and dosimetric effects on virtual monochromatic images of a Dual Source-Dual Energy CT(DS-DECT) for radiotherapy planning. Materials and Methods: Dual energy(80/Sn 140 kVp) and single energy(120 kVp) scans were obtained with dual source CT scanner. Virtual monochromatic images were reconstructed at 40-140 keV for the catphan phantom study. The solid water-equivalent phantom for dosimetry performs an analytical calculation, which is implemented in TPS, of a 10 MV, $10{\times}10cm^2$ photon beam incident into the solid phantom with the existence of stainless steel. The dose profiles along the central axis at depths were discussed. The dosimetric consequences in computed treatment plans were evaluated based on polychromatic images at 120 kVp. Results: The magnitude of differences was large at lower monochromatic energy levels. The measurements at over 70 keV shows stable HU for polystyrene, acrylic. For CT to ED conversion curve, the shape of the curve at 120 kVp was close to that at 80 keV. 105 keV virtual monochromatic images were more successful than other energies at reducing streak artifacts, which some residual artifacts remained in the corrected image. The dose-calculation variations in radiotherapy treatment planning do not exceed ${\pm}0.7%$. Conclusion: Radiation doses with dual energy CT imaging can be lower than those with single energy CT imaging. The virtual monochromatic images were useful for the revision of CT number, which can be improved for target coverage and electron densities distribution.

  • PDF

A Study on Photoneutron Characteristics Generated from Target and Collimator of Electron Linear Accelerator for Container Security Inspection using MCNP6 Code (MCNP6 코드를 이용한 컨테이너 보안 검색용 전자 선형가속기 표적과 조준기에서 발생한 광중성자 특성에 관한 연구)

  • Lee, Chang-Ho;Kim, Jang-Oh;Lee, Yoon-Ji;Jeon, Chan-hee;Lee, Ji-Eun;Min, Byung-In
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.4
    • /
    • pp.455-465
    • /
    • 2020
  • The purpose of this study is to evaluate the photoneutron characteristics generated by the linear accelerator target and collimator. The computer simulation design firstly, consisted of a target, a single material target and a composite material target. Secondly, it consisted of a cone beam and a fan beam depending on the type of the collimator. Finally, the material of the fan beam collimator is composed of a single material composed of only lead (Pb) and a composite material collimator composed of tungsten (W) and lead (Pb). The research method calculated the photoneutron production rate and energy spectrum using F2 tally from the surface of a virtual sphere at a distance of 100 cm from the target. As a result, firstly the photoneutron production rate was 20% difference, depending on the target. Secondly, depending on the type of the collimator, there was a 10% difference. Finally, depending on the collimator material, there was a 40% difference. In the photoneutron energy spectrum, the average photoneutron flux tended to be similar to the photoneutron production rate. As a result, it was confirmed that the 9 MeV linear accelerator photoneutron are production increased more by the collimator than by the target, and by the material, not the type of the collimator. Selecting and operating targets and collimator with low photoneutron production will be the most active radiation protection. Therefore, it is considered that this research can be a useful data for introducing and operating and radiation protection of a linear accelerator for container security inspection.

Energy Spectrum Analysis between Single and Dual Energy Source X-ray Imaging for PCB Non-destructive Test (PCB 비파괴 검사에 있어서 단일 에너지 소스와 이중 에너지 소스의 영상비교를 위한 엑스선 스펙트럼 분석)

  • Kim, Myungsoo;Kim, Giyoon;Lee, Minju;Kang, Dong-uk;Lee, Daehee;Park, Kyeongjin;Kim, Yewon;Kim, Chankyu;Kim, Hyoungtaek;Cho, Gyuseong
    • Journal of Radiation Industry
    • /
    • v.9 no.3
    • /
    • pp.153-159
    • /
    • 2015
  • Reliability of printed circuit board (PCB), which is based on high integrated circuit technology, is having been important because of development of electric and self-driving car. In order to answer these demand, automated X-ray inspection (AXI) is best solution for PCB non-destructive test. PCB is consist of plastic, copper, and, lead, which have low to high Z-number materials. By using dual energy X-ray imaging, these materials can be inspected accurately and efficiently. Dual energy X-ray imaging, that have the advantage of separating materials, however, need some solution such as energy separation method and enhancing efficiency because PCB has materials that has wide range of Z-number. In this work, we found out several things by analysis of X-ray energy spectrum. Separating between lead and combination of plastic and copper is only possible with energy range not dose. On the other hand, separating between plastic and copper is only with dose not energy range. Moreover the copper filter of high energy part of dual X-ray imaging and 50 kVp of low energy part of dual X-ray imaging is best for efficiency.

Dosimetric Properties of LiF:Mg,Cu,Na,Si TL pellets (LiF:Mg,Cu,Na,Si TL 소자의 선량계적 특성)

  • Nam, Young-Mi;Kim, Jang-Lyul;Chang, Si-Young
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.1
    • /
    • pp.7-12
    • /
    • 2001
  • Sintered LiF:Mg,Cu,Na,Si thermoluminescence (TL) pellets were developed for application in radiation dosimetry. In the present study, the TL dosimetric properties of LiF:Mg,Cu,Na,Si TL pellets have been investigated for emission spectrum, dose response, energy response, and fading characteristics. LiF:Mg,Cu,Na,Si TL pellets were made by using a sintering process, that is, pressing and heat treatment from TL powders. Photon irradiations for the experiments were carried out using X-ray beams and a $^{137}Cs$ gamma source at the Korea Atomic Energy Research Institute (KAERI). The average energies and the dose were in the range of 20-662 keV and $10^{-6}-10^{-2}\;Gy$, respectively. The glow curves were measured with a manual type TLD reader(System 310, Teledyne) at a constant nitrogen flux and a linear heating rate. For a constant heating rate of $5^{\circ}C\;s^{-1}$, the main dosimetric peak of glow curve appeared at $234^{\circ}C$, the activation energy was 2.34 eV and frequency factor was $1.00{\times}10^{23}$. TL emission spectrum is appeared at the blue region centered at 410 nm. A linearity of photon dose response was maintained up to 100 Gy. The photon energy responses relative to $^{137}Cs$ response were within ${\pm}20%$ at overall photon energy region. The fading of TL sensitivity of the pellets stored at the room temperature was not found for one year.

  • PDF

The RBE of Fractionated Fast Neutron on Walker 256 Carcinosarcoma with KCCH-Cyclotron (Walker 256 Carcinosarcoma의 원자력병원 싸이클로트론 속중성자선 분할조사에 대한 생물학적 효과비에 관한 연구)

  • Yoo, Seong-Yul;Koh, Kyoung-Hwan;Cho, Chul-Koo;Park, Charn-Il;Kang, Wee-Saing
    • Radiation Oncology Journal
    • /
    • v.5 no.2
    • /
    • pp.75-82
    • /
    • 1987
  • For evaluation of biological effect of $p^+(50.5MeV)$ Be neutron beam produced by Korea Cancer Center Hospital (KCCH) cyclotron the RBE had been measured in experimental tumor Walker 256 carcinosarcoma as well as normal tissue, mouse intestine and bone marrow, in single and fractionated irradiation. As pilot study, the RBE had been measured for the mouse jejunal crypt cells in single whole body irradiation of which the result was 2.8. The obtained RBE values of TCD 50 of Walker 256 tumor, bone marrow and intestine En single irraiation were 1.9, 1.9 and 1.5 respectively. In fractionated irradiation, the RBE value of tumor Walker 256 was decreased as increasing of fraction number and increased as increaing of fraction size.

  • PDF

Thermoluminescence Kinetics of LYGBO Crystal (LYGBO 단결정의 열형광 전자포획준위 인자)

  • Sunghwan, Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.17-23
    • /
    • 2023
  • In this study, the thermoluminescence kinetics of electron trap in Li6Y0.5Gd0.5(BO3)3 (LY0.5G0.5BO) scintillator for neutron detection composed of Li, Gd, and B with a high neutron response cross-section were investigated. The thermoluminescence glow curve of the LY0.5G0.5BO scintillation single crystal was measured and analyzed using the peak shape method, the initial rise method, and the machine learning algorithm to evaluate the physical parameters of the electron trap. The glow curve of the LY0.5G0.5BO scintillation single crystal consisted of a single peak. As a result of analyzing this peak, the activation energy, emission order, and frequency factor of the electron trap were 0.61 eV, 1.1, and 1.7×107 s-1, respectively. In addition, the possibility of thermoluminescence analysis of scintillators using machine learning was confirmed.

The Study on Design of Customized Radiation Protective Layer for Medical Radiation Dose Reduction (의료방사선 피폭선량 저감을 위한 맞춤형 차폐재 설계에 관한 연구)

  • Kang, Sang-Sik;Kim, Kyo-Tae;Noh, Si-Cheol;Jung, Bong-Jae;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.6
    • /
    • pp.333-338
    • /
    • 2014
  • The fact is that in addition to an increase in social needs that must be managed systematically unnecessary exposure in the field of medical Recent important that the shield has emerged. However, products that are now in practical use, are not subdivided as compared to various medical radiology. Therefore, in the present study, we tried to present with the help of Monte Carlo simulation the structure of the shielding material that has been optimized. Simulated estimation result, the energy of the mammography for (30 kVp) spectrum, check the shielding rate of 90% or more $30{\mu}mPb$, at 2 mmAl case of shielding material of a single, at design time of 1 mmAl and 0.03 mmPb a double shield structure it is determined that more efficient. Also, check the blocking rate of 90% or more $340{\mu}mPb$, at 30 mmAl energy captured general in (80 kVp) spectra, it is considered that a double shield structure, design 1 mmAl and 0.3 mmPb is useful. These results, be used as basic material for the development of commercialization customized products for dose reduction is expected.

Depth Dose Distribution of Proton Beams by Variation of Tumor Density using Geant4 (Geant4 전산모사를 이용한 종양의 밀도 변화에 따른 양성자의 선량 분포)

  • Kim, You-Me;Chon, Kwon-Su
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.6
    • /
    • pp.771-779
    • /
    • 2021
  • It is necessary to overlap several peaks to form spread out Bragg peak (SOBP) in order to cover the tumor volume because a mono-energetic proton beam forms a narrow Bragg peak. The tumor density has been considered as a brain tissue and then the absorbed dose of the tumor is calculated using Monte Carlo simulations. However, densities of tumors were not a constant. In this study, the SOBP of proton beams was calculated according to changing density of tumors by using Geant4. Tumors were selected as 10 mm and 20 mm width which were the treatment range in the brain phantom. The energies and relative weights of the proton beams were calculated using mathematical formula to form the SOBP suitable for the location and size of the tumor. As the density of the tumor was increased, the 95% modulation range and the practical range were decreased, and average absorbed dose in the 95% modulation range was increased. The change of the tumor density affects the dose distribution of the proton beams, which results in short SOBP within the tumor volume. The consideration of the tumor density affects the determination of the range, so that the margin of the treatment volume can be minimized, and the advantages of proton therapy can be maximized.

A Theoretical Calculation for Angular Dependence of X-ray Beams on Extremity Phantom (말단팬텀에서 X-선 빔의 방향의존성에 관한 이론적 계산)

  • Kim, Jong-Soo;Yoon, Suk-Chul;Kim, Jang-Lyul;Kim, Kwang-Pyo
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.4
    • /
    • pp.263-271
    • /
    • 1996
  • The ANSI N13.32 recommends that a study of the angular response of a dosimeter be carried out once, although no pass/fail criterion is given for angular response. Gamma dose equivalent conversion and angular dependence factors were calculated by using MCNP code for the case of ANSI N13.32 extremity phantoms(finger and arm) at the depth of $7mg/cm^2$. Those extremity dosimeters were assumed to be irradiated from both monoenergitic photons and ISO X-ray narrow beams. These calculated gamma dose equivalent conversion and angular dependence factors were compared to B. Grosswendt's result calculated by using X-ray beams. The result showed that the dose equivalent conversion factors of this study agreed well with that of B. Grosswendt for all energies within 2% except 7% in the case of the low energies. In the case of angular dependence factors comparison, they agreed within 3%. It was shown that angular dependence factors of the finger phantom decreased as the horizontal angle of the phantom increased for the ISO X-ray beams less than 60keV. For the higher energy X-ray beams range they decreased slightly around 40 degree, but then increased from this energy to 90 degree.

  • PDF

Extracorporeal Shock-wave Therapy after Multiple Drilling as a Treatment for Chronic Calcific Tendinitis - An Analysis of Outcome Following Different Levels of Energy (만성 석회화 건염에 대한 다발성 천공술 후 추가적으로 시행한 체외 충격파 치료의 에너지 수준에 따른 결과분석)

  • Noh, Gyu Cheol;Jang, Keun Jong
    • The Journal of Korean Orthopaedic Ultrasound Society
    • /
    • v.5 no.2
    • /
    • pp.66-74
    • /
    • 2012
  • Purpose: To compare the outcome of two methods of chronic calcific tendinitis (CCT) treatment, Multiple drilling alone versus combined drilling and extracorporeal shock-wave therapy (ESWT). Furthermore, to analyze the clinical and radiologic results of different energy level configurations of ESWT. Materials and Methods: Among the patients complaining shoulder pain who visited the clinic from June 2010 to August 2011, 98 were diagnosed with CCT of the supraspinatus and were divided into the following three groups. Multiple drilling alone (n=31), Multiple drilling followed by high-energy ESWT (n=31), Multiple drilling followed by low-energy ESWT (n=36). The study was conducted only with patients with chronic pain persisting longer than six months despite prolonged conservative therapy. Clinical evaluation was done before and after 12 weeks from treatment, in clinical terms using the ASES, KSS, CSS system reflecting performance and symptom improvement, and in radiologic terms by studying the change in size of the calcific nodules. Results: All of three groups showed effects for improvement of clinical function and decrease of calcification and clinical improvement was significantly high in comparison between the group fulfilled by only multiple needling (the third group) and the group fulfilled by additional ESWT (the first and second groups) and in the radiological evaluation, calcification size and the rate of calcification decrease showed significant improvement statistically. For the comparison among the groups, degree of clinical function improvement and rate of calcification decrease showed significant difference between high energy group (the first group) and multiple needling group (the third group) as well as low energy group (the second group) and multiple needling group (the third group). But, in comparison between high energy group (the first group) and low energy group (the second group), there was no significant difference for the degree of clinical function improvement and rate of calcification decrease. Conclusion: For the treatment of chronic calcific tendinitis, additional ESWT showed more superior effects on clinical function improvement and radiological improvement regardless of the energy standard rather than the exclusive fulfillment of needling. But, as the result of ESWT by the energy standard, there was no significant difference for the decrease of calcification and degree of clinical function improvement.

  • PDF