• Title/Summary/Keyword: 단열용기

Search Result 46, Processing Time 0.023 seconds

Effect of Stabilizing Thermal Gradients on Natural Convection in a Completely Confined Rectangular Enclosure (안정온도구배가 밀폐용기내의 자연대류에 미치는 영향)

  • 김무현;이진호;장은구
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.6
    • /
    • pp.1330-1338
    • /
    • 1989
  • 본 연구에서는 직각밀폐용기의 수평경계면이 단열인 경우뿐만 아니라 등온 조건을 갖는 경우에 대해 실험적으로 연구하여 경계조건의 변화가 직각밀폐용기내 흐름 및 열전달에 미치는 영향, 특히 등온조건을 갖는 경우 수직 온도차에 따르는 안정온도 구배효과로 예상되는 흐름의 억제, 지연효과를 작종 물리적 변수들의 영향과 함께 세밀히 조사하였다.

Natural Convection Heat Transfer in Rectangular Air Enclosures With Adiabatic and Isothermal Horizontal Boundary Conditions (단열 및 등온수평 경계조건을 갖는 직각 밀폐용기내 공기의 자연대류 열전달)

  • 이진호;김무현;모정하
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.207-213
    • /
    • 1990
  • Natural convection heat transfer in rectangular air enclosure was studied interferometrically and numerically for the use of adiabatic and constant temperature horizontal boundary conditions. In the isothermal horizontal boundary case with the temperature difference ratio, .DELTA. $T_{v/}$.DELTA. $T_{H}$ .simeq. 1 temperature distribution in the enclosure is strongly stratified and the average Nusselt Number is higher than that of adiabatic horizontal boundary case.ase.

Study on Adiabatic Performance of LNG Storage Tank for Vehicles (차량용 LNG연료용기의 단열성능에 관한 연구)

  • Han, Jeong-Ok;Lee, Young-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.1
    • /
    • pp.31-35
    • /
    • 2008
  • Natural gas vehicles are being applied to city buses for improving air quality in metropolitan and have proved the effective way to reduce the pollutant emissions. Liquified Natural Gas(LNG) has also attempted a vehicle fuel in order to raise the fuel storage density that is a disadvantage of Compressed Natural Gas(CNG). This paper described insulation characteristic of a LNG storage tank. From the results, adiabatic coefficient of a tested tank was around $40J/h{\cdot}^{\circ}C{\cdot}m^2$ and it was the lower level than gas safety regulation limit. Two experimental methods were adopted to justify the evaluation results and they were revealed that the results were very similar to each other. Also, through testing relief valve operation characteristic it was investigated venting amount of boiled off gas.

  • PDF

A Study of Optimum Insulation Conditions of a HTS Power Cable Cryostat (고온초전도 전력케이블 저온용기의 최적단열설계에 관한 연구)

  • Koh, Deuk-Yong;Lee, Kwan-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.4
    • /
    • pp.333-338
    • /
    • 2007
  • The object of this study is to find the optimal insulation design conditions of a HTS power cable cryostat. The optimum condition of a cable cryostat is obtained by varying types of MLIs, cable core weights, spacer diameters, winding pitches and MLI layer numbers. As the weight of cable core is increased, conduction heat transfer from surroundings to cable cryostat is increased. But as the spacer pitch is increased from 120 mm to 200 mm, the heat leak of cable cryostat remains almost constant. The optimal number of MLI layers is suggested. Double ply MLI is more effective than triple ply MLI and the insulation effect is best when the number of MLI layers is 36.

A Preliminary Assessment on ERVC Performance Depending on Insulation Conditions (단열재 조건에 따른 원자로용기 외벽냉각 성능 예비분석)

  • Dong-Hyeon Choi;Yoon-Suk Chang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.1
    • /
    • pp.36-43
    • /
    • 2023
  • Lots of researches have been conducted on in-vessel retention (IVR) to prevent or mitigate severe accident in nuclear power plants. Various methodologies were proposed and the external reactor vessel cooling was selected as a part of promising IVR strategy. In this study, the strategy is strengthened by enhancing the natural circulation performance through the adoption of insulation in the reactor cavity. A thermal analysis was carried out based on an assumed accident scenario and its results were used as boundary conditions for subsequent seven flow analysis cases. By comparing the natural circulation performance, effects of annular gaps and insulation shapes on the mass flow rate and flow velocity were quantified. The improvement in cooling performance can be reflected in actual design via detailed assessment.

제품 완충재에서 무대 소품까지 다양

  • (사)한국발포스티렌재활용협회
    • 환경사랑
    • /
    • s.27
    • /
    • pp.12-13
    • /
    • 2001
  • 스티로폴은 탁월한 충격 흡수력과 방수성, 단열성 등의 특성 때문에 제품 완충재나 포장 용기로 널리 애용되고 있다. 최근에는 성형과 착색이 용이해 방송용 소품, 가게의 디스플레이 소품, 또는 실물의 이미테이션으로도 용도가 넓혀지고 있다. 이렇게 널리 활용되고 있는 스티로폴의 다양한 용도에 대해 알아보자.

  • PDF

Simulation Experiment of PEMFC Using Insulation Vessel at Low Temperature Region (저온영역에서 단열용기를 이용한 연료전지 모의 실험)

  • Jo, In-Su;Kwon, Oh-Jung;Kim, Yu;Hyun, Deok-Su;Park, Chang-Kwon;Oh, Byeong-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.5
    • /
    • pp.403-409
    • /
    • 2008
  • Polymer electrolyte membrane fuel cell (PEMFC) is very interesting power source due to high power density, simple construction and operation at low temperature. But it has problems such as high cost, improvement of performance, effect of temperature and initial start at low temperature. These problems can be approached to be solved by using experiment and mathematical method which are general principles for analysis and optimization of control system for heat and hydrogen detecting management. In this paper, insulation vessel and control system for stable operation of fuel cell at low temperature were developed for experiment. The constant temperature capability and the heating time at sub-zero temperatures with insulation control system were studied by using a heating bar of 60W class. PEMFC stack which was made by 4 cells with $50\;mc^2$ active area in each cell is a thermal source. Times which take to reach constant temperature by the state of insulation vacuum were measured at variable environment temperatures. The test was performed at two conditions: heating mode and cooling mode. Constant temperature capability was better at lower environment temperature and vacuum pressure. The results of this experiment could be used as basis data about stable operation of fuel cell stack in low temperature zone.

Thermal Analysis on the LNG Storage Tank of LNG Bunkering System Applied with Double Shield Insulation Method (LNG 벙커링용 이중 단열적용 LNG 저장탱크 열해석)

  • Jung, Il-Young;Kim, Nam-Guk;Yun, Sang-Kook
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.4
    • /
    • pp.1-6
    • /
    • 2018
  • An LNG bunkering system stores LNG in a horizontal IMO's C-Type tank insulated with perlite powder, and $10^{-2}$ Torr vacuum in the annular space between the double walls. Current storage tanks have high heat leakage, evaporating over 2.0% daily. A more efficiently insulated storage tank reducing the evaporation rate is required to develope. This research carried out thermal analysis on a new effective insulation method, i.e. double shield insulation system, that separates high super vacuum in the annular space between two tanks with a perlite vacuum in the back side of outer tank. This highly efficient insulation system obtained an evaporation rate of 0.16% per day under a $10^{-4}$ Torr vacuum. Even if the space loses its vacuum, the new insulation system showed a lower evaporation rate of 5.23% than the present perlite system of 4.9%.