DOI QR코드

DOI QR Code

A Preliminary Assessment on ERVC Performance Depending on Insulation Conditions

단열재 조건에 따른 원자로용기 외벽냉각 성능 예비분석

  • 최동현 (경희대학교 원자력공학과) ;
  • 장윤석 (경희대학교 원자력공학과)
  • Received : 2023.05.26
  • Accepted : 2023.06.13
  • Published : 2023.06.30

Abstract

Lots of researches have been conducted on in-vessel retention (IVR) to prevent or mitigate severe accident in nuclear power plants. Various methodologies were proposed and the external reactor vessel cooling was selected as a part of promising IVR strategy. In this study, the strategy is strengthened by enhancing the natural circulation performance through the adoption of insulation in the reactor cavity. A thermal analysis was carried out based on an assumed accident scenario and its results were used as boundary conditions for subsequent seven flow analysis cases. By comparing the natural circulation performance, effects of annular gaps and insulation shapes on the mass flow rate and flow velocity were quantified. The improvement in cooling performance can be reflected in actual design via detailed assessment.

Keywords

References

  1. Ghyym, S. H., 1998, "Overview of In-vessel Retention Concept Involving Level of Passivity: With Application to Evolutionary Pressurized Water Reactor Design," Annals of Nuclear Energy, Vol. 25, pp. 997-1010. https://doi.org/10.1016/S0306-4549(97)00099-6
  2. Park, J. H., Jeong, Y. H., Baek, W. P., and Chang, S. H., 2001, "An Assessment Methodology for In-vessel Corium Retention by External Reactor Vessel Cooling During Severe Accidents in PWRs," Annals of Nuclear Energy, Vol. 28, pp. 1237-1250. https://doi.org/10.1016/S0306-4549(00)00121-3
  3. Rempe, J. L., Knudson, D. L., Condie, K. G., Suh, K. Y., Cheung, F. B., and Kim, S. B., 2003, "Conceptual Design of an In-vessel Core Catcher," Nuclear Engineering and Design, Vol. 230, pp. 311-325. https://doi.org/10.1016/j.nucengdes.2003.11.030
  4. Declercq, C., Ballard, A., Ferraro, G., and Toure, A., 2018, "The EUR Assessment Process and Highlights of the Compliance Analysis for the EU-APR Standard Design," 2018 26th International Conference on Nuclear Engineering, ICONE, London, July 22-26.
  5. Declerq, C., Ballard, A., and Ferraro, G, 2018, "Assessment of the EU-APR Standard Design Versus the European Utility Requirements," Korean Nuclear Society Spring Meeting, JeJu, May 17-18.
  6. Kim, I. H., Won, J. S., Bae, T. H., Yi, K. W., Choi, H. R., Kim, G. S., Lee, S. K., Kim, S. J., Chung, C. K., Kim, B. G., Seo, J. T., and Lee, B. J., 2019, "Development of BANDI-60S for a Floating Nuclear Power Plant," Transaction of the Korean Nuclear Society, Vol. 35, pp. 24-26.
  7. Ha, K. S., Park, R. J., Kim, H. Y., Kim, S. B., and Kim, H. D., 2004, "A Study of the Two-phase Natural Circulation Flow through the Annular Gap between a Reactor Vessel and Insulation System," International Communications In Heat and Mass Transfer, Vol. 31, pp. 43-52. https://doi.org/10.1016/S0735-1933(03)00200-8
  8. Ha, K. S., Park, R. J., Choi, Y. R., Kim, S. B. and Kim, H. D., 2005, "A Study on the Two-phase Natural Circulation Flow through the Gap between the Reactor Vessel and the Insulation under ERVC," Proceedings of the American Nuclear Society - International Congress on Advances In Nuclear Power Plants 2005, ICAPP'05, Vol. 2, pp. 1142-1149, May 15-19.
  9. ANSYS. Inc, 2020, "ANSYS Mechanical and Workbench," 2020 R1
  10. ANSYS. Inc, 2020, "ANSYS Fluent Theory Guide," 2020 R1
  11. Park, R. J., Kang, K. H., Hong, S. W., Kim, S. B., and Song, J. H., 2012, "Corium Behaviour in the Lower Plenum of the Reactor Vessel under IVR-ERVC Condition: Technical Issues," Nuclear Engineering and Technology, Vol. 44, pp. 237-248. https://doi.org/10.5516/NET.03.2012.701
  12. Rouge, S., Dor, I. and Geffraye, G., 1999, "Reactor Vessel External Cooling for Corium Retention SULTAN Experimental Program and Modelling with CATHARE Code," Proceedings of the Workshop on in-vessel core debris retention and coolability, Garching, Germany, March 3-6.
  13. Park, R. J., Son, D. G., Kang, H. S., An, S. M. and Ha, K. S., 2021, "Development of IVR-ERVC Evaluation Method and its Application to the SMART," Annals of Nuclear Energy, Vol. 161, pp. 108463.
  14. Esmaili, H. and Khatib-Rahbar, M., 2005, "Analysis of Likelihood of Lower Head Failure and Ex-vessel Fuel Coolant Interaction Energetics for AP1000," Nuclear Engineering and Design, Vol. 235, pp. 1583-1605. https://doi.org/10.1016/j.nucengdes.2005.02.003
  15. Kim, T. H., Chang, Y. S., Kim, M. C. and Lee, B. S., 2017, "Sensitivity Study on Creep Behaviors of RPV under Severe Accident Conditions," Trans. of the KPVP, Vol. 13, No. 1, pp. 61-68. doi:http://dx.doi.org/10.20466/KPVP.2017.13.1.061.
  16. Kim, J. S., Chang, Y. S. and Jin, T. E., 1997, "Damage Analysis for Reactor Pressure Vessel with External Reactor," Proceedings of KSME Conference, Vol. 5, pp. 996-1001.
  17. Kim, T. H., Kim, S. H. and Chang, Y. S., 2015, "Structural Assessment of Reactor Pressure Vessel under Multi-layered Corium Formation Conditions," Nuclear Engineering and Technology, Vol. 47, pp. 351-361. https://doi.org/10.1016/j.net.2014.12.017
  18. Song, M. S., Park, I. W., Kim, E. S. and Lee, Y. G., 2022, "Numerical Study on Thermal-hydraulics of External Reactor Vessel Cooling in High-power Reactor using MARS-KS1.5 Code: CFD-aided Estimation of Natural Circulation Flow Rate," Nuclear Engineering and Technology, Vol. 54, pp. 72-83. https://doi.org/10.1016/j.net.2021.07.037