• Title/Summary/Keyword: 단열온도상승량

Search Result 51, Processing Time 0.024 seconds

Mathematical Modelling of Degree of Hydration and Adiabatic Temperature Rise (콘크리트의 수화도 및 단열온도상승량 예측모델 개발)

  • 오병환;차수원;신경준;하재담;김기수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.883-887
    • /
    • 1998
  • Hydration is the main reason for the growth of the material properties. A exact parameter to control the chemical and physical process is not the time, but the degree of hydration. Therefore, it is reasonable that development all material properties should be formulated in terms of degree of hydration. Mathematical formulation of degree of hydration is based on combination of reaction rate functions. The effect of moisture conditions as well as temperature on the rate of reaction is considered in the degree of hydration model. This effect is subdivided into two contributions: water shortage and water distribution. The former is associated with the effect of on the progress of hydration. The water needed for progress of hydration do not exist and there is not enough space for the reaction products to form. The latter is associated with the effect of free capillary water distribution in the pore system. Physically absorption layer does not contribute to progress of hydration and only free water is available for further hydration.

  • PDF

Fundamental Properties of Fly ash Concrete Containing Lightly Burnt MgO Powder (저온 소성한 MgO 분말을 함유한 플라이애시 콘크리트의 기본 물성)

  • Choi, Seul-Woo;Jang, Bong-Seok;Lee, Kwang-Myong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.475-481
    • /
    • 2013
  • Although the lightly burnt MgO at $850{\sim}1000^{\circ}C$ has expansibility, it does not lead to unsound concrete. The expansion of MgO could compensate for shrinkage of concrete for a long-term, because the hydration of MgO occurs at a slow pace. Recently, the study and application of mineral admixture such as fly ash and blast furnace slag have increased for the hydration heat reduction, durability improvement, and reducing $CO_2$ emission in the construction industry. Thus, it is necessary to research on the concrete that contains both a mineral admixture and MgO as an expansion agent. This study investigates fundamental properties of fly ash concrete with lightly burnt MgO through various experiments. The adiabatic temperature test results showed that the fly ash concrete with MgO of the 5% replacement ratio had the slower pace of the temperature rise and the lower final temperature than the fly ash concrete. The influences of MgO on long-term compressive strength varied depending on water-binder ratio, and the long-term length change test results indicated the expansion effects of the FA concrete containing MgO.

A Study on the Effects of Variables in Temperature Distribution of Mass Concrete (매스 콘크리트의 온도분포에 영향을 주는 주요 변수에 관한 연구)

  • 정철헌;강석화;정한중;박칠림;오병환
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.5
    • /
    • pp.203-212
    • /
    • 1994
  • The setting and hardening of concrete is accompanied by nonlinear temperature distribution caused by developing heat of cement hydration. This leads to tensile stresses that may exceed the strength of the young concrete, and cracks occur. In this present study, the heat of hydration characteristics are obtained from a study in which insulated concrete cubes were tested. Based on test results, concrete heat of hydration characteristics according to unit weight cement and flyash replacement quantity are determined, then employed in a numerical temperature analysis that consider both environmental interaction and concreting phases. The numerical results are performed by ADINA - T. The analytical results are in good agreement with experimental data.

A Fundamental Properties of the Concrete Using Coarse Particle Cement and Mineral Admixture (굵은입자 시멘트와 광물질 혼화재를 조합 사용하는 콘크리트의 기초적 특성)

  • Han, Cheon-Goo;Jang, Duk-Bae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.131-138
    • /
    • 2010
  • This research intends to analyze the basic characteristics of cements(hereinafter "CC") with affordable price and particle distribution effective as hydration heat face which are discharged at the outlet of smashing process of ordinary portland cement(hereinafter "OPC") manufacturing process such as fluidity, rigidity, temporary insulation temperature increase amount etc to review the potential of developing "CC" to 3 ingredients low heat cement that substitutes fly ash and blast furnace slag(hereinafter "BS"). As a result of experiment, fluidity tended to decrease with increase in CC substitution rate, and increase with increase in FA+BS substitution rate. Air amount tended to slightly decrease with increase in CC substitution rate, and decrease with increase in FA+BS substitution rate. Condensation characteristics were such that condensation time was delayed with increase in CC and FA+BS substitution rate. As for the temperature rising amount by temporary insulation, peak temperature decreased with increase in CC substitution rate and increase in FA+BS substitution rate in general, and thereafter, temperature tended to decrease slowly. Compressive strength decreased with increase in CC and FA+BS substitution rate, and as aging goes on, long term strength was equivalent to plain or higher. By and large, when FA+BS was substituted to CC, fluidity and air amount tended to decrease, but hydration heat face showed good reduction effects, suggesting possibility of development to 3 ingredients low heat cement.

  • PDF

Prediction of adiabatic capillary tube length of a vehicle heat pump using carbon dioxide (수송기계 $CO_2$ 히트펌프용 단열 모세관 길이 예측에 관한 연구)

  • Oh, Hoo-Kyu;Choi, Kwang-Hwan;Son, Chang-Hyo;Jeon, Min-Ju
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.06a
    • /
    • pp.277-277
    • /
    • 2011
  • 본 논문은 $CO_2$ 히트펌프용 모세관의 기초 설계자료를 제공하기 위해서 모세관 길이 예측에 대해서 이론 및 실험적으로 조사하였다. 본 연구에서 고려된 작동변수로는 증발온도, 가스냉각기 냉각압력, 냉매유량, 모세관의 관경 등이다. 몇몇연구자들의 자료를 바탕으로 $CO_2$ 모세관 길이를 예측할 수 있는 수학적 모델식을 작성하였다. 그리고 단열 모세관 팽창장치내 $CO_2$의 증발온도, 냉매유량, 냉각압력 등에 대해서 실험한 결과, Fig. 1에 나타낸 것처럼, 모세관 길이가 증가할수록 증발온도는 감소하는 것을 알 수 있다. 그리고 증발온도에 대한 실험값과 예측값의 비교 결과, 실험값이 예측값보다 약간 높게 나타났다. $CO_2$냉매가 모세관내를 통과할 때 플래쉬 가스(flash gas)의 발생으로 인해 액상의 양보다 기상의 양이 많아지고 액상의 압력강하보다 기상의 압력강하가 휠씬 더 크기 때문이다. 또한 증발온도에 대한 실험값과 예측값은 6.5~9.9% 이내에서 좋은 일치를 보였다. Fig. 2에 나타낸 것처럼, 모세관 길이가 증가할수록 냉매유량은 감소하는 것을 알 수 있다. 이는 전술한 바와 같이 모세관 길이가 증가할수록 냉매 압력강하가 더욱더 증가하기 때문이다. 그리고 냉매유량에 대한 실험값과 예측값의 비교 결과, 실험값이 예측값보다 약간 높게 나타났다. 이는 전술한 증발온도와 동일한 이유로 실제 $CO_2$냉매가 모세관내를 통과할 때 플래쉬 가스의 발생량이 많아지기 때문이다. 또한 냉매유량에 대한 실험값과 예측값은 0.64~10.9% 이내에서 좋은 일치를 보였다. Fig. 3에 나타낸 것처럼, 모세관 길이가 증가할수록 냉각압력은 증가하는 것을 알 수 있다. 이는 증발온도가 일정한 경우 모세관 길이가 증가할수록 냉매유량이 감소하여 압축기 토출측 온도(압력)가 상승하기 때문이다. 그리고 냉각압력에 대한 실험값과 예측값의 비교 결과, 실험값이 예측값보다 약간 낮게 나타났으며 실험값과 예측값은 1.04~3.7% 이내에서 좋은 일치를 보였다. 따라서 본 연구에서는 수송기계용 $CO_2$ 열펌프 단열 모세관에 대한 기초설계 자료로서, 냉각압력, 증발온도, 모세관 직경, 냉매유량 등의 조건으로부터 모세관 길이를 계산해낼 수 있는 예측 상관식을 제안하였다.

  • PDF

The Study on High Performance of Offshore Concrete Using Crushed Stone Fines (쇄석미분말을 사용한 해양콘크리트의 고성능화에 관한 연구)

  • Chang, Chun-Ho;Jung, Yong-Wook
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.2
    • /
    • pp.135-142
    • /
    • 2009
  • This study investigates the characteristic properties of strength, flowability, durability and drying shrinkage to control strength and to reduce heat of hydration of high performance concrete using crushed stone fines. According to the experimental results, when crushed stone fines are increased every 10%, $10{\sim}15%$ of compressive strength is decreased and flowability of high performance concrete is effectively improved due to the decrease of modulus of deformation and confined water ratio. When crushed stone fines are replaced every 10%, $4^{\circ}C$ of the highest adiabatic temperature rise is decreased by reducing the unit cement. However, 5% of drying shrinkage is increased in the same condition In the meantime, durability of high performance concrete is excellent, having over 100% of good relative dynamic modulus of elasticity due to fineness of formation mused by the increase of the unit powder content and the improvement of flowability, without regard to the replacement of crushed stone fines. Therefore, It can be said that the usage of crushed stone fines can control the strength of high performance concrete by replacement and reduce heat of hydration.

  • PDF

Mock-up Test of Concrete using Combined Coarse particle Cement and Fly-Ash (굵은 입자 시멘트 및 플라이애시를 복합 사용한 콘크리트의 Mock-up Test)

  • Lee, Chung-Sub;Lee, Jae-Youn;Jang, Duk-Bae;Kim, Young-Pil;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.87-91
    • /
    • 2009
  • This study investigates possibility for practical use through small sized test with OPC and substituted fly ash 10% and return coarse cement (RCC), classed 1100${\sim}$1200 cm2/g, which is made by Cyclone Separator at cement producing process 20% (CF) for OPC. The experimental factors are 48% of W/B and OPC and 2 kinds of concrete proportions. The target slump and air content are $150{\pm}25$ mm and $4.5{\pm}1.5$ %. For the results, the flowalility and air content of CF are less than OPC because it needs more superplasticiser and air-entraining agent. The temperature history of CF is lower than OPC about $6{\sim}10^{\circ}C$. For the strength properties, CF is less than OPC, but their gap is declined at 28 days. The strength of the specimens are ordered by standard curing, field cured specimens, and core specimens.

  • PDF

Fundamental Properties of the Low Heat Concrete depending on the Coarse Particle Cement (조분 시멘트의 치환율 변화에 따른 저발열 콘크리트의 기초적 특성)

  • Noh, Sang-Kyun;Baek, Dae-Hyun;Cha, Wan-Ho;Jang, Duk-Bae;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.45-48
    • /
    • 2007
  • This study investigates mechanical properties of the concrete using coarse particle cement which is manufactured by the classifying process. The variable factors are 3 types of W/C such as 40, 50, and 60% and 5types of the replacement of the coarse particle cement such as 0, 25, 50, 75, and 100%. As the results, amount of SP agent to secure the target fluidity is gradually declined in accordance with increasing CC replacement. There is no special tendency for target air content, but setting time is delayed according to increasing CC content. The peak of the simple adiabatic temperature rise is gradually decreased in accordance with increasing CC content, and approach time to peak is slightly delayed. The compressive strength is comparatively delayed.

  • PDF

Effectiveness of the Aluminum Thermal Screens Depending on the Allocation Type (알루미늄반사재의 배치형태에 따른 보온 효과)

  • Kim, Young-Bok;Park, Joong-Choon;Huh, Moo-Ryong;Lee, Si-Young;Jeong, Sung-Woo
    • Journal of Bio-Environment Control
    • /
    • v.16 no.4
    • /
    • pp.284-290
    • /
    • 2007
  • Thermal insulation effectiveness of the aluminum insulator depending on the direction of its glossing face, number of layer and allocation position was investigated. Modules were assembled by the combination of the variables levels and experimented for the case of 100 W and 40 W heating in the modules. The temperatures in the modules with the aluminum insulator were higher than those of the modules with polyester curtains. For the modules with one layer aluminum insulator, the inside temperatures of the modules with the direction of the glossing face outward were higher than those of the modules of inward. For two layer of aluminum insulator, the directions of those glossing faces were recommended to be the same direction for higher thermal insulation effectiveness. For the modules without heating, the temperature difference between the modules were not significant. The black globe temperatures in the modules were changed with the similar tendencies with the dry bulb temperatures in the modules. Those of the black globes were higher than those of the dry bulb temperatures as a whole. It was more distinguished for the modules of inward direction.

Thermal Property and Fire Resistance of Cellulose Insulation (섬유질 단열재의 열적 특성 및 내화성능)

  • Kwon, Young-Cheol;Seo, Seong Yeon;Kim, Sung Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.203-212
    • /
    • 2005
  • Cellulose insulation is primarily manufactured from recycled newsprint and treated with fire retardants for the fire resistance. Thanks to the fire retardants, it is not combustible and flammable. In addition to that, Its thermal resistance is much better than that of fiberglass or rock wool. It is made from waste paper and easily decayed when it is demolished, and it has small embodied energy. So it is very environment-friendly building material. For broader use of cellulose insulation in buildings in Korea, it is necessary to test its physical performance to compare the results with the requirements on the Korean Building Code. To this end, apparent thermal conductivity (ka) measurements of Korean-made loose-fill cellulose insulations were recently completed using equipment that was built and operated in accordance with ASTM C 518 and the fire resistance was tested in accordance with ASTM C 1485. Korean loose-fill cellulose has thermal conductivity about 5% greater than the corresponding U.S. product at the same density. This is likely due to differences in the recycled material being used. Both spray-applied and loose-fill cellulose insulation lose about 1.5% of their thermal resistivity for $5.5^{\circ}C$ increase in temperature. The fire resistance of cellulose insulation is increased in linear proportion to the increase of the rate of fire retardant. Thanks to the high fire resistance, cellulose insulation can be used as a substitution of Styrofoam or Urethane foam which is combustible. The thermal conductivity of cellulose insulation was $0.037-0.043W/m{\cdot}K$ at the mean specimen temperature from $4-43^{\circ}C$. It corresponds to the thermal resistance of "Na Grade" according to the Korean Building Code. The effect of chemical content on thermal conductivity was negligible for all but the chemical-free specimen which had the highest value for the thermal conductivity over the temperature range tested. The thermal resistance of cellulose insulation is better than that of fiberglass or rock wool, and its fire resistance is higher than that of Styrofoam or Urethane foam. Therefore it can be substituted for those above considering its physical performance. Cellulose insulation is no more expensive than Styrofoam or rock wool, so it is recommended to use it more widely in Korea.