• Title/Summary/Keyword: 단어 표현

Search Result 569, Processing Time 0.023 seconds

Korean Text Automatic Summarization using Semantically Expanded Sentence Similarity (의미적으로 확장된 문장 간 유사도를 이용한 한국어 텍스트 자동 요약)

  • Kim, Heechan;Lee, Soowon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.11a
    • /
    • pp.841-844
    • /
    • 2014
  • 텍스트 자동 요약은 수많은 텍스트 데이터를 처리함에 있어 중요한 연구 분야이다. 이중 추출요약은 현재 가장 많이 연구가 되고 있는 자동 요약 분야이다. 본 논문은 추출 요약의 선두 연구인 TextRank는 문장 간 유사도를 계산할 때 문장 내 단어 간의 의미적 유사성을 충분히 고려하지 못하였다. 본 연구에서는 의미적 유사성을 고려한 새로운 단어 간 유사도 측정 방법을 제안한다. 추출된 문장 간 유사도는 그래프로 표현되며, TextRank의 랭킹 알고리즘과 동일한 랭킹 알고리즘을 사용하여 실험적으로 평가하였다. 그 결과 문장 간 유사성을 고려할 때 단어의 의미적 요소를 충분히 고려하여 정보의 유실을 최소화하여야 한다는 것을 실험 결과로써 확인할 수 있었다.

A Study on Context Environment and Model State for Robustness Acoustic Models (강건한 음향모델을 위한 모델의 상태와 문맥환경에 관한 연구)

  • 최재영;오세진;황도삼
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.05b
    • /
    • pp.366-369
    • /
    • 2003
  • 본 연구에서는 강건한 문맥의존 음향모델을 작성하기 위한 기초적인 연구로서 문맥환경과 상태수의 변화에 따른 음향모델의 성능을 고찰하고자 한다. 음성은 시간함수로 표현되며 음절, 단어, 연속음성을 발성할때 자음과 모음에 따라 발성시간에 차이가 있으며 음성인식의 최소 인식단위로 널리 사용되는 음소의 앞과 뒤에 오는 문맥환경에 따라 인식성능에 많은 차이를 보이고 있다. 따라서 본 연구에서는 시간의 변화(상태수의 변화)와 상태분할 과정에서 문맥환경의 변화를 고려하여 다양한 형태의 문맥의존 음향모델을 작성하였다. 모델학습은 음소결정트리 기반 SSS 알고리즘(Phonetic Decision Tree-based Successive State Splitting: PDT-555)을 이용하였다 PDT-SSS 알고리즘은 미지의 문맥정보를 해결하기 위해 문맥방향과 시간방향으로 목표 상태수에 도달할 때까지 상태분할을 수행하여 모델을 작성하는 방법이다. 본 연구에서 강건한 문맥의존 음향모델을 학습하기 위한 방법의 유효성을 확인하기 위해 국어공학센터의 452 단어를 대상으로 음소와 단어인식 실험을 수행하였다. 실험결과, 음성의 시간변이에 따른 모델의 상태수와 각 음소의 문맥환경에 따라 인식성능의 변화를 고찰할 수 있었다. 따라서 본 연구는 향후 음성인식 시스템의 강건한 문맥의존 음향모델을 작성하는데 유효할 것으로 기대된다.

  • PDF

A Prediction System of Sentence using Deep Learning (답러닝을 활용한 문장 예측 시스템)

  • Jung, Jin-mo;Ji, Soo-jin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.402-404
    • /
    • 2018
  • 본 논문은 기존에 주어진 문장 다음에 올 수 있는 문장에 대해 딥러닝을 활용하여 예측하는 시스템이며, 데이터 전처리, 문장 목적 파악, 문맥 파악의 세가지 파트로 구성되어 있다. 전처리 과정에서는 문장에 쓰인 단어에 대한 품사 정보를 Input Feature 로 추가한다. 이어서 문장 목적 파악을 위해서는 상황별로 문장을 표현하는 방법이나 단어들의 순서가 다르기 때문에 단어의 순서보다는 문장의 특징점을 학습한다. 마지막으로 문맥 파악을 위해서 이전 단계에서 학습된 문장별 목적 데이터를 기반으로 데이터의 시간적 흐름에 대한 학습을 진행함으로써 이후에 나올 수 있는 문장을 예측한다.

A Study on the Analysis of Emotion-expressing Vocabulary for Realtime Conversion of Avatar′s Countenances (아바타의 실시간 표정변환을 위한 감정 표현 어휘 분석에 관한 연구)

  • 이영희;정재욱
    • Archives of design research
    • /
    • v.17 no.2
    • /
    • pp.199-208
    • /
    • 2004
  • In cyberspace based on internet, users constitute communities and interact one another. Avatar means not only the other self but also the 'another being' that describes oneself in the cyberspace. If user's avatar shows expressive faces and behaves according to his thinking and emotion, he will have a feel of reality much more in the cyberspace. If avatar's countenances can be animated by just typing characters in avatar-based chat communication, the user is able to express his emotions more effectively. In this study, emotion-expressing vocabulary is analyzed and classified. Emotion-expressing vocabulary is essential to develop self-reactive avatar system in which avatar's countenances are automatically converted according to the words typed by users at chat. The results are as follows; First, emotion-expressing vocabulary selected out of Korean adjectives and intransitive verbs is made up of 209 words and is classified into 25 groups. Second, there are only 2 groups out of the 25 groups for positive expressions and others are for negative expressions. Therefore, negative expressions are more abundant than positive expressions in Korean vocabulary. Third, avatar's countenances are modelled according to the 25 groups by using the Quantification Method 3. The result shows that the emotion-expressing vocabulary has dose relations with avatar's countenances and is useful to communicate users' emotions. However, this study has some limits, in that Korean linguistical structure - the whole meaning of context - cannot be interpreted quantitatively.

  • PDF

Visual Sentences for Educational Math Games

  • Chang, Hee-Dong
    • 한국게임학회지
    • /
    • v.8 no.1
    • /
    • pp.32-38
    • /
    • 2011
  • The help or guide sentences of educational math games which use mathematical statements need to represent graphical forms for the learners of the game generation whose cognitive style is graphic first. In this paper, we proposed an object-based visual representation method for mathematical statements. It has object-based description rules to use graphical symbols and mathematical symbols with text words. It is easy to describe or to understand accurately mathematical meaning and is also fast for learners to read for understanding. The proposed method is good for learners of the game generation to get the help as scaffolding for learning math by educational games.

  • PDF

Analysis over Extracting Physical Referring Expressions by Recursive Application over Neural Network (물리적 지시 표현 추출 및 처리를 위한 신경망의 재귀적 사용에 대한 고찰)

  • Koo, Sangjun;Lee, Kyusong;Lee, Gary Geunbae
    • Annual Conference on Human and Language Technology
    • /
    • 2012.10a
    • /
    • pp.142-147
    • /
    • 2012
  • 본 논문에서는 신경망을 재귀적으로 사용하여 문장에서 지시 표현을 추출하고 분석하는 방법에 대해서 제안한다. 임의의 문장이 들어올 때, 문장을 구성하는 각 단어들은 통사론적 자질 벡터와 의미론적 자질 벡터로 나눌 수 있다. 이들 벡터들의 쌍을 인자로써 입력받는 신경망 구조를 제시할 수 있으며, 신경망의 출력 결과는 다시 재귀적으로 쌍인자 신경망에 입력으로써 주입된다. 신경망을 재귀적으로 학습시킴으로써, 문장 내의 지시 표현을 추출할 수 있다. 쌍인자 신경망 파싱 모델의 성능을 측정했고, 제안한 모델의 문제점과 가능성에 대해서 관찰하였다.

  • PDF

A Study on the optimal text corpus for company names (한국어최적상호명코퍼스설계에관한연구)

  • Lee, Sun-Jung
    • Journal of the Korea Computer Industry Society
    • /
    • v.5 no.5
    • /
    • pp.747-754
    • /
    • 2004
  • In this paper, we obtain an optimal corpus that can represent its characteristics very well from the baseline corpus which consists of unique 1,566,943 names among company names in a directory assistance serve (114). Two kinds of optimal solutions ared considered to obtain the optimal corpus. The first solution is to find phonetically balanced corpus (PBC), which are the minimum set including all possible triphones in the baseline corpus. The second solution is to find the phonetically distributed corpus (PDC), which is a minimum set representing the frequency characteristics of triphones in the baseline corpus. We can obtain 8,699 words as the PBC and 16,783 words (similarity measure R = 0.92) as PDC, respectively. These corpora can be used for the development of speech recognition and speech synthesis.

  • PDF

Tonal Characteristics Based on Intonation Pattern of the Korean Emotion Words (감정단어 발화 시 억양 패턴을 반영한 멜로디 특성)

  • Yi, Soo Yon;Oh, Jeahyuk;Chong, Hyun Ju
    • Journal of Music and Human Behavior
    • /
    • v.13 no.2
    • /
    • pp.67-83
    • /
    • 2016
  • This study investigated the tonal characteristics in Korean emotion words by analyzing the pitch patterns transformed from word utterance. Participants were 30 women, ages 19-23. Each participant was instructed to talk about their emotional experiences using 4-syllable target words. A total of 180 utterances were analyzed in terms of the frequency of each syllable using the Praat. The data were transformed into meantones based on the semi-tone scale. When emotion words were used in the middle of a sentence, the pitch pattern was transformed to A3-A3-G3-G3 for '즐거워서(joyful)', C4-D4-B3-A3 for '행복해서(happy)', G3-A3-G3-G3 for '억울해서(resentful)', A3-A3-G3-A3 for '불안해서(anxious)', and C4-C4-A3-G3 for '침울해서(frustrated)'. When the emotion words were used at the end of a sentence, the pitch pattern was transformed to G4-G4-F4-F4 for '즐거워요(joyful)', D4-D4-A3-G3 for '행복해요(happy)', G3-G3-G3-A3 and F3-G3-E3-D3 for '억울해요(resentful)', A3-G3-F3-F3 for '불안해요(anxious)', and A3-A3-F3-F3 for '침울해요(frustrated)'. These results indicate the differences in pitch patterns depending on the conveyed emotions and the position of words in a sentence. This study presents the baseline data on the tonal characteristics of emotion words, thereby suggesting how pitch patterns could be utilized when creating a melody during songwriting for emotional expression.

Wordnet Extension for IT terminology Using Web Search (웹 검색을 활용한 워드넷에서의 IT 전문 용어 확장)

  • Park, Kyeong-Kook;Lee, Kwang-Mo;Kim, Yu-Seop
    • Annual Conference on Human and Language Technology
    • /
    • 2007.10a
    • /
    • pp.189-193
    • /
    • 2007
  • In this paper, we designed a methodology to expand the WordNet. We added unknown terms like IT technical terms to the existing WordNet by using web search. The WordNet is an online taxonomy representing the relationships among terms, but it usually showed limitation to contain new technical terminologies. That's why we tried to expand the WordNet. Firstly, when we met unregistered terms in WordNet, we built a query of those terms for web search. Given a web search results, we tried to find out terms with a high-level relatedness with the unregistered terms. We used the Korean Morphological Analyzer to score the relatedness between terms and located the unregistered term as a hyponym of terms with high score of relatedness.

  • PDF

Learning Contextual Meaning Representations of Named Entities for Correcting Factual Inconsistent Summary (개체명 문맥의미표현 학습을 통한 기계 요약의 사실 불일치 교정)

  • Park, Junmo;Noh, Yunseok;Park, Seyoung
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.54-59
    • /
    • 2020
  • 사실 불일치 교정은 기계 요약 시스템이 요약한 결과를 실제 사실과 일치하도록 만드는 작업이다. 실제 요약 생성연구에서 가장 공통적인 문제점은 요약을 생성할 때 잘못된 사실을 생성하는 것이다. 이는 요약 모델이 실제 서비스로 상용화 하는데 큰 걸림돌이 되는 부분 중 하나이다. 본 논문에서는 원문으로부터 개체명을 가져와 사실과 일치하는 문장으로 고치는 방법을 제안한다. 이를 위해서 언어 모델이 개체명에 대한 문맥적 표현을 잘 생성할 수 있도록 학습시킨다. 그리고 학습된 모델을 이용하여 원문과 요약문에 등장한 개체명들의 문맥적 표현 비교를 통해 적절한 단어로 교체함으로써 요약문의 사실 불일치를 해소한다. 제안 모델을 평가하기 위해 추상 요약 데이터를 이용해 학습데이터를 만들어 학습하고, 실제 시나리오에서 적용가능성을 검증하기 위해 모델이 요약한 요약문을 이용해 실험을 수행했다. 실험 결과, 자동 평가와 사람 평가에서 제안 모델이 비교 모델보다 높은 성능을 보여주었다.

  • PDF