• Title/Summary/Keyword: 단어 표현

Search Result 569, Processing Time 0.033 seconds

Word Representation Analysis of Bio-marker and Disease Word (바이오 마커와 질병 용어의 단어 표현 분석)

  • Youn, Young-Shin;Nam, Kyung-Min;Kim, Yu-Seop
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.165-168
    • /
    • 2015
  • 기계학습 기반의 자연어처리 모듈에서 중요한 단계 중 하나는 모듈의 입력으로 단어를 표현하는 것이다. 벡터의 사이즈가 크고, 단어 간의 유사성의 개념이 존재하지 않는 One-hot 형태와 대조적으로 유사성을 표현하기 위해서 단어를 벡터로 표현하는 단어 표현 (word representation/embedding) 생성 작업은 자연어 처리 작업의 기계학습 모델의 성능을 개선하고, 몇몇 자연어 처리 분야의 모델에서 성능 향상을 보여 주어 많은 관심을 받고 있다. 본 논문에서는 Word2Vec, CCA, 그리고 GloVe를 사용하여 106,552개의 PubMed의 바이오메디컬 논문의 요약으로 구축된 말뭉치 카테고리의 각 단어 표현 모델의 카테고리 분류 능력을 확인한다. 세부적으로 나눈 카테고리에는 질병의 이름, 질병 증상, 그리고 난소암 마커가 있다. 분류 능력을 확인하기 위해 t-SNE를 이용하여 2차원으로 단어 표현 결과를 맵핑하여 가시화 한다.

  • PDF

A Word Embedding used Word Sense and Feature Mirror Model (단어 의미와 자질 거울 모델을 이용한 단어 임베딩)

  • Lee, JuSang;Shin, JoonChoul;Ock, CheolYoung
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.4
    • /
    • pp.226-231
    • /
    • 2017
  • Word representation, an important area in natural language processing(NLP) used machine learning, is a method that represents a word not by text but by distinguishable symbol. Existing word embedding employed a large number of corpora to ensure that words are positioned nearby within text. However corpus-based word embedding needs several corpora because of the frequency of word occurrence and increased number of words. In this paper word embedding is done using dictionary definitions and semantic relationship information(hypernyms and antonyms). Words are trained using the feature mirror model(FMM), a modified Skip-Gram(Word2Vec). Sense similar words have similar vector. Furthermore, it was possible to distinguish vectors of antonym words.

Korean Emotion Vocabulary: Extraction and Categorization of Feeling Words (한국어 감정표현단어의 추출과 범주화)

  • Sohn, Sun-Ju;Park, Mi-Sook;Park, Ji-Eun;Sohn, Jin-Hun
    • Science of Emotion and Sensibility
    • /
    • v.15 no.1
    • /
    • pp.105-120
    • /
    • 2012
  • This study aimed to develop a Korean emotion vocabulary list that functions as an important tool in understanding human feelings. In doing so, the focus was on the careful extraction of most widely used feeling words, as well as categorization into groups of emotion(s) in relation to its meaning when used in real life. A total of 12 professionals (including Korean major graduate students) partook in the study. Using the Korean 'word frequency list' developed by Yonsei University and through various sorting processes, the study condensed the original 64,666 emotion words into a finalized 504 words. In the next step, a total of 80 social work students evaluated and classified each word for its meaning and into any of the following categories that seem most appropriate for inclusion: 'happiness', 'sadness', 'fear', 'anger', 'disgust', 'surprise', 'interest', 'boredom', 'pain', 'neutral', and 'other'. Findings showed that, of the 504 feeling words, 426 words expressed a single emotion, whereas 72 words reflected two emotions (i.e., same word indicating two distinct emotions), and 6 words showing three emotions. Of the 426 words that represent a single emotion, 'sadness' was predominant, followed by 'anger' and 'happiness'. Amongst 72 words that showed two emotions were mostly a combination of 'anger' and 'disgust', followed by 'sadness' and 'fear', and 'happiness' and 'interest'. The significance of the study is on the development of a most adaptive list of Korean feeling words that can be meticulously combined with other emotion signals such as facial expression in optimizing emotion recognition research, particularly in the Human-Computer Interface (HCI) area. The identification of feeling words that connote more than one emotion is also noteworthy.

  • PDF

Biomarker Detection of Specific Disease using Word Embedding (단어 표현에 기반한 연관 바이오마커 발굴)

  • Youn, Young-Shin;Kim, Yu-Seop
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.317-320
    • /
    • 2016
  • 기계학습 기반의 자연어처리 모듈에서 중요한 단계 중 하나는 모듈의 입력으로 단어를 표현하는 것이다. 벡터의 사이즈가 크고, 단어 간의 유사성의 개념이 존재하지 않는 One-hot 형태와 대조적으로 유사성을 표현하기 위해서 단어를 벡터로 표현하는 단어 표현 (word representation/embedding) 생성 작업은 자연어 처리 작업의 기계학습 모델의 성능을 개선하고, 몇몇 자연어 처리 분야의 모델에서 성능 향상을 보여 주어 많은 관심을 받고 있다. 본 논문에서는 Word2Vec, CCA, 그리고 GloVe를 사용하여 106,552개의 PubMed의 바이오메디컬 논문의 요약으로 구축된 말뭉치 카테고리의 각 단어 표현 모델의 카테고리 분류 능력을 확인한다. 세부적으로 나눈 카테고리에는 질병의 이름, 질병 증상, 그리고 난소암 마커가 있다. 분류 능력을 확인하기 위해 t-SNE를 이용하여 2차원으로 단어 표현 결과를 맵핑하여 가시화 한다. 2차원으로 맵핑된 결과 값을 코사인 유사도를 사용하여 질병과 바이오 마커간의 유사도를 구한다. 이 유사도 결과 값 상위 20쌍의 결과를 가지고 실제 연구가 되고 있는지 구글 스콜라를 통해 관련 논문을 검색하여 확인하고, 검색 결과를 점수화 한다. 실험 결과 상위 20쌍 중에서 85%의 쌍이 실제적으로 질병과 바이오 마커 간의 관계를 파악하는 방향으로 진행 되고 있으나, 나머지 15%의 쌍에 대해서는 실질적인 연구가 잘 되고 있지 않은 것으로 파악되었다.

  • PDF

Biomarker Detection of Specific Disease using Word Embedding (단어 표현에 기반한 연관 바이오마커 발굴)

  • Youn, Young-Shin;Kim, Yu-Seop
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.317-320
    • /
    • 2016
  • 기계학습 기반의 자연어처리 모듈에서 중요한 단계 중 하나는 모듈의 입력으로 단어를 표현하는 것이다. 벡터의 사이즈가 크고, 단어 간의 유사성의 개념이 존재하지 않는 One-hot 형태와 대조적으로 유사성을 표현하기 위해서 단어를 벡터로 표현하는 단어 표현 (word representation/embedding) 생성 작업은 자연어 처리 작업의 기계학습 모델의 성능을 개선하고, 몇몇 자연어 처리 분야의 모델에서 성능 향상을 보여 주어 많은 관심을 받고 있다. 본 논문에서는 Word2Vec, CCA, 그리고 GloVe를 사용하여 106,552개의 PubMed의 바이오메디컬 논문의 요약으로 구축된 말뭉치 카테고리의 각 단어 표현 모델의 카테고리 분류 능력을 확인한다. 세부적으로 나눈 카테고리에는 질병의 이름, 질병 증상, 그리고 난소암 마커가 있다. 분류 능력을 확인하기 위해 t-SNE를 이용하여 2차원으로 단어 표현 결과를 맵핑하여 가시화 한다. 2차원으로 맵핑된 결과 값을 코사인 유사도를 사용하여 질병과 바이오 마커간의 유사도를 구한다. 이 유사도 결과 값 상위 20쌍의 결과를 가지고 실제 연구가 되고 있는지 구글 스콜라를 통해 관련 논문을 검색하여 확인하고, 검색 결과를 점수화 한다. 실험 결과 상위 20쌍 중에서 85%의 쌍이 실제적으로 질병과 바이오 마커 간의 관계를 파악하는 방향으로 진행 되고 있으나, 나머지 15%의 쌍에 대해서는 실질적인 연구가 잘 되고 있지 않은 것으로 파악되었다.

  • PDF

Performance Improvement of Document Classification by Rule-based Word Clustering (규칙기반 단어 클러스터링에 의한 문서 분류의 성능 향상)

  • Hyun Woo-Seok
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.196-198
    • /
    • 2006
  • 분류되지 않은 문서의 문서 분류는 현재까지 아주 중요한 문제로 대두되고 있다. 컴퓨터를 이용한 문서 검색 엔진인 Citeseer에서는 문서 인덱싱을 하기 위해서 자동문서 분류 방법을 사용하고 있다. 문서 분류는 원본 문서의 단어들을 제1의 속성 표현으로 사용한다. 그러나 이와 같은 표현은 고차원과 속성 부족을 초래하게 된다. 단어 클러스터링은 속성 차원과 속성 부족을 감소시키기 위한 효율적인 방법이며 문서 분류 성능을 향상시켜 준다. 본 연구에서는 클러스터 속성 표현을 위한 도메인 규칙기반 단어 클러스터링 방법을 사용한다. 클러스터는 다양한 도메인 데이터베이스들과 단어 철자 속성들로부터 생성되는데, 이와 같은 클러스터 속성 표현은 중요한 차원 감소뿐만 아니라 문서 헤더 라인의 평균 분류 성능에서 향상을 보여 주었고, 원본 문서 단어 기반 속성 표현과 비교해 보았을 때 도서목록 항목 추출의 정확도를 향상시켰다.

  • PDF

Visualizer of Associated Word by Analyzing News Articles (신문 기사 분석을 통한 연관어 비주얼라이저)

  • Kim, Hyun-Jin;Moon, Sung-Young;Jeong, Yong-Gi;Lee, Jeong-Joon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.1189-1192
    • /
    • 2013
  • 신문기사 분석을 통한 연관어 비주얼라이저는 신문 기사의 단어를 추출하여 단어 간 연관도를 분석하여 다양한 그래프로 표현하는 시스템이다. 인터넷 신문사의 뉴스 기사들을 수집하고 형태소 분석을 통해 기사별로 단어의 출현 횟수를 데이터베이스에 저장하고 단어와 단어 간의 연관성을 분석한다. 단어 간 연관성을 측정하기 위한 기준으로 두 단어 간 동일기사에 존재여부, 동일날짜에 존재여부를 이용한다. 이 값을 바탕으로 웹 페이지 상에서 다양한 그래프로 상위 연관성을 가진 단어들을 표현한다. 표현 되는 그래프는 다양한 형태의 그래프로 단어와 단어사이에 연관성을 보다 쉽게 파악 할 수 있다.

Word Embedding using Semantic Restriction of Predicate (용언의 의미 제약을 이용한 단어 임베딩)

  • Lee, Ju-Sang;Ock, Cheol-Young
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.181-183
    • /
    • 2015
  • 최근 자연어 처리 분야에서 딥 러닝이 많이 사용되고 있다. 자연어 처리에서 딥 러닝의 성능 향상을 위해 단어의 표현이 중요하다. 단어 임베딩은 단어 표현을 인공 신경망을 이용해 다차원 벡터로 표현한다. 본 논문에서는 word2vec의 Skip-gram과 negative-sampling을 이용하여 단어 임베딩 학습을 한다. 단어 임베딩 학습 데이터로 한국어 어휘지도 UWordMap의 용언의 필수논항 의미 제약 정보를 이용하여 구성했으며 250,183개의 단어 사전을 구축해 학습한다. 실험 결과로는 의미 제약 정보를 이용한 단어 임베딩이 유사성을 가진 단어들이 인접해 있음을 보인다.

  • PDF

Method of Document Retrieval Using Word Embeddings and Disease-Centered Document Clusters (단어 의미 표현과 질병 중심 의학 문서 클러스터 기반 의학 문서 검색 기법)

  • Jo, Seung-Hyeon;Lee, Kyung-Soon
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.51-55
    • /
    • 2016
  • 본 논문에서는 임상 의사 결정 지원을 위한 UMLS와 위키피디아를 이용하여 지식 정보를 추출하고 질병중심 문서 클러스터와 단어 의미 표현을 이용하여 질의 확장 및 문서를 재순위화하는 방법을 제안한다. 질의로는 해당 환자가 겪고 있는 증상들이 주어진다. UMLS와 위키피디아를 사용하여 병명과 병과 관련된 증상, 검사 방법, 치료 방법 정보를 추출하고 의학 인과 관계를 구축한다. 또한, 위키피디아에 나타나는 의학 용어들에 대하여 단어의 효율적인 의미 추정 기법을 이용하여 질병 어휘의 의미 표현 벡터를 구축하고 임상 인과 관계를 이용하여 질병 중심 문서 클러스터를 구축한다. 추출한 의학 정보를 이용하여 질의와 관련된 병명을 추출한다. 이후 질의와 관련된 병명과 단어 의미 표현을 이용하여 확장 질의를 선택한다. 또한, 질병 중심 문서 클러스터를 이용하여 문서 재순위화를 진행한다. 제안 방법의 유효성을 검증하기 위해 TREC Clinical Decision Support(CDS) 2014, 2015 테스트 컬렉션에 대해 비교 평가한다.

  • PDF

Distributed Representation of Words with Semantic Hierarchical Information (의미적 계층정보를 반영한 단어의 분산 표현)

  • Kim, Minho;Choi, Sungki;Kwon, Hyuk-Chul
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.941-944
    • /
    • 2017
  • 심층 학습에 기반을 둔 통계적 언어모형에서 가장 중요한 작업은 단어의 분산 표현(Distributed Representation)이다. 단어의 분산 표현은 단어 자체가 가지는 의미를 다차원 공간에서 벡터로 표현하는 것으로서, 워드 임베딩(word embedding)이라고도 한다. 워드 임베딩을 이용한 심층 학습 기반 통계적 언어모형은 전통적인 통계적 언어모형과 비교하여 성능이 우수한 것으로 알려져 있다. 그러나 워드 임베딩 역시 자료 부족분제에서 벗어날 수 없다. 특히 학습데이터에 나타나지 않은 단어(unknown word)를 처리하는 것이 중요하다. 본 논문에서는 고품질 한국어 워드 임베딩을 위하여 단어의 의미적 계층정보를 이용한 워드 임베딩 방법을 제안한다. 기존연구에서 제안한 워드 임베딩 방법을 그대로 활용하되, 학습 단계에서 목적함수가 입력 단어의 하위어, 동의어를 반영하여 계산될 수 있도록 수정함으로써 단어의 의미적 계층청보를 반영할 수 있다. 본 논문에서 제안한 워드 임베딩 방법을 통해 생성된 단어 벡터의 유추검사(analog reasoning) 결과, 기존 방법보다 5%가 증가한 47.90%를 달성할 수 있었다.