• Title/Summary/Keyword: 단어 유사도

검색결과 548건 처리시간 0.031초

특정 조사와 빈도수 높은 단어를 이용한 한글 논문의 유사도 측정 시스템 구현 (Similarity Measurement System of Korean Documents Using the Specified Particles and High Frequency Words)

  • 유승희;한소희;조동섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1829-1830
    • /
    • 2007
  • 인터넷의 발달로 대량의 전자문서들을 손쉽게 구할 수 있는 정보의 바다라 불리는 현대사회에서 논문 표절은 심각한 문제를 안게 되었다. 표절여부를 검사하는 방법에는 여러 가지가 있지만 보다 정확하고 빠르게 검출할 수 있는 기법이 요구된다. 외국에서는 표절을 검사하기 위한 시스템적인 접근이 이루어지고 있지만 국내에서의 표절 검사에 대한 연구는 아직 초기 단계에 있다. 본 논문에서는 논문 표절 검사 시스템에 사용되는 기법 중 지문법을 바탕으로 하지만 기존의 단어, 문장 등을 사용하는 방법과 차별을 두어 몇몇 주요 단어와 특정 조사의 비교를 이용해 유사성을 측정하여 보다 빠르고 정확하게 검출할 수 있는 시스템을 구현해 보았다.

  • PDF

Word2Vec를 이용한 단어 의미 모호성 해소 (Word Sense Disambiguation using Word2Vec)

  • 강명윤;김보겸;이재성
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.81-84
    • /
    • 2015
  • 자연어 문서에 출현하는 단어에는 중의적 단어가 있으며, 이 단어에서 발생되는 의미 모호성은 대개 그 문맥에 따라 해소된다. 의미 모호성 해소 연구 중, 한국어 단어 공간 모델 방법은 의미 태그 부착 말뭉치를 이용하여 단어의 문맥 정보를 구축하고 이를 이용하여 모호성을 해결하는 연구로서 비교적 좋은 성능을 보였다. 본 연구에서는 Word2Vec를 이용하여 기존 연구인 한국어 단어 공간 모델의 단어 벡터를 효과적으로 축소할 수 있는 방법을 제안한다. 세종 형태 의미 분석 말뭉치로 실험한 결과, 제안한 방법이 기존 성능인 93.99%와 유사한 93.32%의 정확률을 보이면서도 약 7.6배의 속도 향상이 있었다.

  • PDF

한국인의 영어단어 재인과정:어휘접근과 단어길이효과 (English visual word recognition of Korean: lexical access and word length effect)

  • 이윤형;최원일;정유진;남기춘
    • 한국인지과학회:학술대회논문집
    • /
    • 한국인지과학회 2000년도 춘계 학술대회
    • /
    • pp.279-284
    • /
    • 2000
  • 시각적으로 제시된 영어 단어 재인시에 주로 단어빈도와 단어길이가 영향을 준다고 알려져 있다. 그러나, 단어빈도와 관련된 연구는 체계적으로 이루어져 왔지만 단어길이와 관련된 연구는 체계적으로 이루어지지 않은 편이다. 또한, 단어빈도와 단이길이에 따라 단어가 성 어휘집(mental lexicon)에 어떻게 표상되어 있으며, 상호간에 어떠한 관계가 있는 것인지에 대해서는 아직 구체적으로 알려져 있지 않다. 본 연구의 목적은 첫째, 단어길이와 빈도가 시각적으로 제시된 영어단어 어휘접근에 어떠한 영향을 미치는지 알아보아 단어길이효과가 어휘접근단계에서 영향을 미치는지 알아보고자 하며 둘째, 단어길이와 빈도가 미국인과 한국인의 어휘접근시 어떤 차이를 보이는지 알아보아 한국인과 미국인의 영어단어 정보처리의 차이를 살펴보고자 하는 것이다. 단어 명명과제와 어휘판단과제를 사용한 실험결과 한국인과 미국인에게 모두 단어 길이와 빈도가 어휘접근에 영향을 주었다. 그러나, 한국인의 경우는 상대적으로 어휘판단과제에서 보다는 단어명명과제에서 어려움을 겪는다는 결과를 보여주었다. 이와 같은 결과를 볼 때 한국인이 영어단어 어휘에 접근할 때에도 미국인과 유사한 방식으로 처리를 하는 것으로 보인다. 그러나, 한국인의 경우는 미국인보다 조음과정에 상대적으로 더 어려움을 느끼는 것으로 보이며, 이것은 영어교육시 단순한 어휘암기보다 음운부호를 산출하고 단어를 말하는 능력을 향상시키는 방법을 좀 더 강조해야 한다는 것을 시사한다.

  • PDF

자동 색인을 이용한 문서의 분류 (Classification of Documents using Automatic Indexing)

  • 신진섭;장수진
    • 한국컴퓨터정보학회논문지
    • /
    • 제4권1호
    • /
    • pp.21-27
    • /
    • 1999
  • 본 논문은 단어들의 유사도를 이용하여 문서들을 자동으로 분류하는 새로운 방법을 제안한다. 단어들 중에서 의미있는 단어들을 찾아내기 위하여 자동색인 방법을 이용하였으며. 두 번째로 본 논문에서 제안한 확률 모델을 이용하여 각 단어들의 문서와의 연관관계를 분석하였다. 이를 토대로 분류를 가능하게 하기 위한 프로파일을 생성한다. 본 논문에서는 유전자 알고리즘과 신경망에 관련된 10개의 문서에 대하여 실험하여 유전자 알고리즘과 신경망에 해당하는 프로파일을 생성하였다.

  • PDF

질의 확장을 이용한 병렬 정보 검색 (Parallel Information Retrieval with Query Expansion)

  • 정유진
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 봄 학술발표논문집 Vol.29 No.1 (B)
    • /
    • pp.103-105
    • /
    • 2002
  • 이 논문에서는, PC 클러스터 환경에서 질의 확장을 사용하는 정보 검색 시스템 (IR)을 설계하고 구현한 내용을 기술한다. 이 정도 검색 시스템은 문서 집합을 저장하고, 문서 집합은 역색인 파인 (IIF)로 색인되고, 랭킹 방법으로 벡터 모델을 사실하며, 질의 확장 방법으로 코사인 유사도를 사용한다. 질의 확장이란 사용자가 준 원래의 질의에 연관된 단어를 추가하여 검색 효율을 향상시키는 것이다. 여기서 제안하는 병렬 정보 검색 시스템에서는 역색인 과일은 여러 개로 분활되는데 lexical 분할 방법과 greedy 분할 방법을 사용한다. 사용자의 질의가 들어오면 질의확장을 하여 여러 개의 단어로 이루어진 확장된 질의가 만들어 지는데 이 확장된 질의를 구성하는 단어들은 각 단어와 연관된 IIF를 가지고 있는 노드에 보내어져서 병렬로 처리된다. 실험을 통하여 병렬 IR 시스템의 성능이 질의 확장과 IIF의 두 가지 분한 방법에 의해 어떻게 영향을 받는지 보인다. 실험에는 표준 한국어 테스트 말뭉치인 EKSET과 KTSET을 사용하였다. 실험에 따르면 greedy 분활 방법이 lexical 분할 방법에 비해 20%정도의 성능 향상을 보였다.

  • PDF

문서 임베딩을 이용한 소셜 미디어 문장의 개체 연결 (Document Embedding for Entity Linking in Social Media)

  • 박영민;정소윤;이정엄;신동수;김선아;서정연
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2017년도 제29회 한글및한국어정보처리학술대회
    • /
    • pp.194-196
    • /
    • 2017
  • 기존의 단어 기반 접근법을 이용한 개체 연결은 단어의 변형, 신조어 등이 빈번하게 나타나는 비정형 문장에 대해서는 좋은 성능을 기대하기 어렵다. 본 논문에서는 문서 임베딩과 선형 변환을 이용하여 단어 기반 접근법의 단점을 해소하는 개체 연결을 제안한다. 문서 임베딩은 하나의 문서 전체를 벡터 공간에 표현하여 문서 간 의미적 유사도를 계산할 수 있다. 본 논문에서는 또한 비교적 정형 문장인 위키백과 문장과 비정형 문장인 소셜 미디어 문장 사이에 선형 변환을 수행하여 두 문형 사이의 표현 격차를 해소하였다. 제안하는 개체 연결 방법은 대표적인 소셜 미디어인 트위터 환경 문장에서 단어 기반 접근법과 비교하여 높은 성능 향상을 보였다.

  • PDF

KAISER: 워드 임베딩 기반 개체명 어휘 자가 학습 방법을 적용한 개체명 인식기 (KAISER: Named Entity Recognizer using Word Embedding-based Self-learning of Gazettes)

  • 함영균;최동호;최기선
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2016년도 제28회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.337-339
    • /
    • 2016
  • 본 논문에서는 한국어 개체명 인식의 성능 향상을 위하여 워드 임베딩을 활용할 수 있는 방법에 대하여 기술한다. 워드 임베딩이란 문장의 단어의 공기정보를 바탕으로 그 단어의 의미를 벡터로 표현하는 분산표현이다. 이러한 분산 표현은 단어 간의 유의미한 정도를 계산하는데 유용하다. 본 논문에서는 이러한 워드 임베딩을 통하여 단어 벡터들의 코사인 유사도를 통한 개체명 사전 자가 학습 및 매칭 방법을 적용하고, 그 실험 결과를 보고한다.

  • PDF

LSA를 이용한 문장 상호 추천과 문장 성향 분석을 통한 문서 요약 (Document Summarization Using Mutual Recommendation with LSA and Sense Analysis)

  • 이동욱;백서현;박민지;박진희;정혜욱;이지형
    • 한국지능시스템학회논문지
    • /
    • 제22권5호
    • /
    • pp.656-662
    • /
    • 2012
  • 본 논문에서는 그래프기반 문장랭킹 방식인 문장 상호 추천과 문장의 주관, 객관 성향을 이용하는 문장 성향 분석을 혼합한 새로운 요약문 추출 방법에 대해서 기술한다. 문장 상호 추천에서는 문장을 단어벡터로 변환한 후에 LSA를 이용하여 문장과 문장 사이의 유사도 점수를 계산하였다. 이렇게 얻어진 유사도와 각 단어의 희귀도(Rarity Score)를 기반으로 문장과 문장 사이의 연결 강도를 정의하여, 그래프 기반 문장 랭킹 방식을 적용 하였다. 한편, 문장성향 분석에서는 주관, 객관 성향을 결정하기 위해서 기존의 Golden Standard 단어 성향 분류를 기반으로 워드넷을 확장하여 데이터베이스를 구축하였다. 이를 통해 각 단어들의 성향을 판단하고 단어들의 평균 성향을 문장의 전체 성향에 반영하여, 주관적 성향을 띄는 문장들을 선택하였다. 최종적으로 문장 상호 추천 결과와 문장 성향 분석 결과를 혼합하여 주어진 문서로부터 요약문을 추출하였다. 요약문 추출 기능의 객관적인 성능 평가를 위하여 추출된 요약문 토대로 한 분류게임을 실시하였고, 그 결과를 MS-Word에 포함된 문서 요약 기능과 비교함으로써, 제안한 모델의 효과성을 확인하였다.

Word2Vec 기반의 의미적 유사도를 고려한 웹사이트 키워드 선택 기법 (Web Site Keyword Selection Method by Considering Semantic Similarity Based on Word2Vec)

  • 이동훈;김관호
    • 한국전자거래학회지
    • /
    • 제23권2호
    • /
    • pp.83-96
    • /
    • 2018
  • 문서를 대표하는 키워드를 추출하는 것은 문서의 정보를 빠르게 전달할 수 있을 뿐만 아니라 문서의 검색, 분류, 추천시스템 등의 자동화서비스에 유용하게 사용 될 수 있어 매우 중요하다. 그러나 웹사이트 문서에서 출현하는 단어의 빈도수, 단어의 동시출현관계를 통한 그래프 알고리즘 등의 기반으로 키워드를 추출할 경우 웹페이지 구조상 잠재적으로 주제와 관련이 없는 다양한 단어를 포함하고 있는 문제점과 한국어 형태소 분석의 정확성이 떨어지는 형태소 분석기 성능의 한계점 때문에 의미적인 키워드를 추출하는데 어려움이 존재한다. 따라서 본 논문에서는 의미적 단어 위주로 구축된 후보키워드들의 집합과 의미적 유사도 기반의 후보 키워드를 선택하는 방법으로써 의미적 키워드를 추출하지 못하는 문제점과 형태소 분석의 정확성이 떨어지는 문제점을 해결하고 일관성 없는 키워드를 제거하는 필터링 과정을 통해 최종 의미적 키워드를 추출하는 기법을 제안한다. 실 중소기업 웹페이지를 통한 실험 결과, 본 연구에서 제안한 기법의 성능이 통계적 유사도 기반의 키워드 선택기법보다 34.52% 향상된 것을 확인하였다. 따라서 단어 간의 의미적 유사성을 고려하고 일관성 없는 키워드를 제거함으로써 문서에서 키워드를 추출하는 성능을 향상시켰음을 확인하였다.

국소 문맥과 공기 정보를 이용한 비교사 학습 방식의 명사 의미 중의성 해소 (Unsupervised Noun Sense Disambiguation using Local Context and Co-occurrence)

  • 이승우;이근배
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제27권7호
    • /
    • pp.769-783
    • /
    • 2000
  • 본 논문에서는 한국어 명사의 중의성 해소를 위해, 원시 말뭉치로부터 얻을 수 있는 지식원으로서 국소문맥을 정의하고 추출하는 방법을 제시한다. 동일한 국소 문맥을 갖는 서로 다른 명사는 그 의미가 유사하다는 직관을 바탕으로 대상 명사의 중의성 해소를 위해 대상명사를 포함하는 국소문맥과 동일한 국소문맥을 갖는 단어를 단서로 사용함으로써 학습 자료의 활용도를 높일 수 있고 빈도수가 적은 단어의 의미 중의성도 해결할 수 있으며, 용언의 확장을 통해 자료 부족 현상을 줄일 수 있다. 대상 명사는 동일한 국소문맥에 의한 단서들과의 최대 유사도 계산을 통해 그 의미가 결정된다. 두 단어간의 유사도는 WordNet으로부터 차용한 의미 계층 구조에서 두 단어가 가지는 개념 사이의 거리에 의해 계산된다. 최대 유사도를 계산하는 과정에서는 단서들의 중의성을 점차 줄여 나감으로써 유사도 계산의 속도를 향상시킬 수 있다. 대상 명사가 둘 이상의 국소문맥을 가질 때에는 각 국소문맥의 종류에 따른 가중치를 부여하여 국소문맥의 종류에 따른 의미제약의 차이를 구현하였다. 또 하나의 지식원으로서 사전 정의와 예문으로부터 공기정보를 얻고, 이를 국소문맥을 보완하기 위한 지식으로 사용하여 최선의 의미를 선택할 수 있도록 하였다. 실험을 통해, 제안하는 방법은 국소 문맥의 적용률이 높고, 공기 정보는 국소 문맥과 상호 보완적으로 사용되어 정확도를 높일 수 있음을 보였다. 본 방법을 실험한 결과, 사용된 단어의 의미 중의성이 크면서도, 기존의 의미 부착 말뭉치를 이용한 교사 학습 방식의 성능보다도 높은 정확도(89.8%)를 얻을 수 있었다.

  • PDF