Annual Conference on Human and Language Technology
/
한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
/
pp.375-379
/
2019
언어학에서의 환유법은 표현을 위해 빌려온 대상이 다양한 의미로 해석 가능하기에 매우 어렵고 난해한 분야이다. 환유의 특성 상 주어진 엔티티의 환유 여부를 구분하기 위해서는 앞뒤 단어와의 연관성 뿐만 아니라 문장 전체의 문맥 정보에 대한 고려가 필수적이다. 최근 이러한 문맥 정보를 고려하여 학습된 다양한 모델들이 등장하면서 환유법에 대한 연구를 하기에 좋은 환경이 구축되고 있다. 본 논문에서는 언어학적 자질 정보를 최소화한 딥러닝을 이용한 환유 해소 모델을 제안한다. LSTM 기반의 feature-based 모델과 및 BERT, XLNet, RoBERTa와 같은 fine-tuning 모델들에 대한 실험을 진행하였다. 실험 결과, fine-tuning 모델들이 baseline과 비교하여 뛰어난 성능 향상을 가져왔으며, 특히 XLNet 모델은 두 개의 환유 해소 데이터 SemEval 2007와 ReLocaR에 대해 각각 90.1%과 95.8%의 정확도를 보여주었다.
For the practical isolated word recognition system, the ability to reject the out-of -vocabulary(OOV) is required. In this paper, we present a rejection method which uses the clustered phoneme modeling combined with postprocessing by likelihood ratio scoring. Our baseline speech recognition system was based on the whole-word continuous HMM. And 6 clustered phoneme models were generated using statistical method from the 45 context independent phoneme models, which were trained using the phonetically balanced speech database. The test of the rejection performance for speaker independent isolated words recogntion task on the 22 section names shows that our method is superior to the conventional postprocessing method, performing the rejection according to the likelihood difference between the first and second candidates. Furthermore, this clustered phoneme models do not require retraining for the other isolated word recognition system with different vocabulary sets.
Journal of the Institute of Convergence Signal Processing
/
제4권4호
/
pp.30-39
/
2003
In this paper, we carried out the performance evaluation of HM-Net(Hidden Markov Network) speech recognition system for Korean speech databases. We adopted to construct acoustic models using the HM-Nets modified by HMMs(Hidden Markov Models), which are widely used as the statistical modeling methods. HM-Nets are carried out the state splitting for contextual and temporal domain by PDT-SSS(Phonetic Decision Tree-based Successive State Splitting) algorithm, which is modified the original SSS algorithm. Especially it adopted the phonetic decision tree to effectively express the context information not appear in training speech data on contextual domain state splitting. In case of temporal domain state splitting, to effectively represent information of each phoneme maintenance in the state splitting is carried out, and then the optimal model network of triphone types are constructed by in the parameter. Speech recognition was performed using the one-pass Viterbi beam search algorithm with phone-pair/word-pair grammar for phoneme/word recognition, respectively and using the multi-pass search algorithm with n-gram language models for sentence recognition. The tree-structured lexicon was used in order to decrease the number of nodes by sharing the same prefixes among words. In this paper, the performance evaluation of HM-Net speech recognition system is carried out for various recognition conditions. Through the experiments, we verified that it has very superior recognition performance compared with the previous introduced recognition system.
This study investigates speech perception in noise (SPIN) in Korean. A new type of Korean SPIN test was developed by adopting a similar format to the English SPIN test. The predictability effects, noise effects and their interactions were examined in order to verify the previous findings based on English. The data from 14 Korean adults collected with this new type of Korean SPIN test confirmed the previous findings: first, the participants' overall performance was better in low noise conditions than in high noise conditions. Secondly, there was a tendency for highly predictable words to be more accurately perceived than less predictable words especially in high noise conditions. The results were interpreted in such a way that the listeners actively used both types of information: acoustic information and contextual information in speech perception. When the acoustic property of the speech sound was degraded with noise, the listeners took advantage of the linguistic contextual information in their processing of the speech sound. The findings of this study conform to those of the previous studies based on the English SPIN test. In addition, a possible effect of the frequency of target word was also found, calling for further investigation in this field of research in Korean. Implications of the results were also discussed. (Cyber Hankuk University of Foreign Studies)
개체명 연결이란 문장 내 어떤 단어를 특정 사물이나 사람, 장소, 개념 등으로 연결하는 작업이다. 과거에는 주로 연결 대상 단어 주변 문맥에서 자질 공학을 거쳐 입력을 만들고, 이를 이용해 SVM이나 Logistic Regression 혹은 유사도 계산, 그래프 기반 방법론 등으로 지도/비지도 학습하여 문제를 풀어왔다. 보통 개체명 연결 문제의 출력 부류(class)가 사물이나 사람 수만큼이나 매우 커서, 자질 희소성 문제를 겪을 수 있다. 본 논문에서는 이 문제에 구조적으로 더 적합하며 모형화 능력이 더 뛰어나다 여겨지는 딥러닝 기법을 적용하고자 한다. 다양한 딥러닝 모형을 이용한 실험 결과 LSTM과 Attention기법을 같이 사용했을 때 가장 좋은 품질을 보였다.
Proceedings of the Korean Information Science Society Conference
/
한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (2)
/
pp.736-738
/
2005
최근 PDA나 PMP와 같은 개인용 모바일 기기의 인터페이스 개발로써 잡음환경에 강인한 음성인식 기술들이 연구되고 있으며 이러한 방법으로 오류패턴, 순차패턴, 의미정보, 문맥정보와 같이 인식기에 독립적인 정보를 이용하거나 영상 정보와 같이 언어와 성격이 다른 이질적인 정보를 이용하여 후처리를 하는 연구들이 진행되어 왔다. 그러나 인식기와 독립적인 정보로 후처리를 하는 방법들의 인식률은 인식기의 사전 인식률이 주변 잡음에 의해 떨어질 경우 후처리 인식률도 같이 떨어지는 현상이 벌어진다. 따라서 본 논문에서는 주변 잡음으로 인한 인식기의 사전 인식률에 저하를 줄이는 방법으로 사용자 적응형 후처리를 제안한다. 사용자 적응형 후처리에 사용되는 데이터는 사용자의 발화에 대한 인식기의 출력 값들이며, 출력 값들은 화자독립모델에 의해 계산되는 각 단어들의 유사도 들이다. 따라서 화자독립모델의 결과를 사용자 적응형 후처리에 적용한 결과 인식기의 오류를 $58.7\%$ 줄일 수 있었다.
Proceedings of the Korea Information Processing Society Conference
/
한국정보처리학회 2016년도 춘계학술발표대회
/
pp.394-395
/
2016
워드 임베딩(word embedding)은 정보검색이나 기계학습에서 단어를 표현하기 위하여 사용되던 기존의 one-hot 벡터 방식의 희소공간 및 단어들 간의 관계정보를 유지할 수 없는 문제를 해결하기 위한 방법이다. 워드 임베딩의 한 방법으로 word2vec은 최근 빠른 학습시간과 높은 효과를 얻을 수 있는 모델로 주목을 받고 있다. word2vec은 수행 시 주어지는 옵션인 벡터차원과 문맥크기에 의해 그 결과 품질이 상이하다. Mikolov는 구글 뉴스 문헌 집합에 대하여 word2vec을 실험하고, 적합한 옵션을 제시하였다. 본 논문에서는 구글 뉴스 문헌 같은 일반 문서가 아닌 생의학 분야에 특화된 문헌에 대하여 word2vec에 대한 다양한 옵션을 실험하고, 생의학 문헌에 적합한 최적의 조건을 분석한다.
Annual Conference on Human and Language Technology
/
한국정보과학회언어공학연구회 2016년도 제28회 한글 및 한국어 정보처리 학술대회
/
pp.90-95
/
2016
개체명 연결이란 문장 내 어떤 단어를 특정 사물이나 사람, 장소, 개념 등으로 연결하는 작업이다. 과거에는 주로 연결 대상 단어 주변 문맥에서 자질 공학을 거쳐 입력을 만들고, 이를 이용해 SVM이나 Logistic Regression 혹은 유사도 계산, 그래프 기반 방법론 등으로 지도/비지도 학습하여 문제를 풀어왔다. 보통 개체명 연결 문제의 출력 부류(class)가 사물이나 사람 수만큼이나 매우 커서, 자질 희소성 문제를 겪을 수 있다. 본 논문에서는 이 문제에 구조적으로 더 적합하며 모형화 능력이 더 뛰어나다 여겨지는 딥러닝 기법을 적용하고자 한다. 다양한 딥러닝 모형을 이용한 실험 결과 LSTM과 Attention기법을 같이 사용했을 때 가장 좋은 품질을 보였다.
Annual Conference on Human and Language Technology
/
한국정보과학회언어공학연구회 2000년도 제12회 한글 및 한국어 정보처리 학술대회
/
pp.292-299
/
2000
본 논문에서는 개체명 사전과 결합 단어 사전, 그리고 용언의 하위범주화 사전을 이용하는 규칙 기반의 한국어 개체명 인식 방법을 제안한다. 각 규칙은 네 단계로 나누어 적용되는데, 첫번째 단계에서는 어절 내의 단어 정보를, 두번째 단계에서는 제한된 주변 문맥 정보를, 그리고 세번째 단계에서는 용언의 하위범주화 정보와 개체명과의 관계를 이응하고, 마지막으로 네번째 단계에서는 개체명 간의 관계 정보를 고려한다. 본 논문에서 제안한 규칙 기반 개체명 인식기의 성능을 평가하기 위해 실험한 결과 90.4%의 정화률과 83.4%의 재현율을 얻었다.
Proceedings of the Korean Society of Computer Information Conference
/
한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
/
pp.43-44
/
2022
기존 자연어 처리 모델은 문맥 단위 단어 임베딩을 처리하지 못하는 한계점을 가지고 있는 한편 최근 BERT 기반 사전학습 모델들은 문장 단위 임베딩이 가능하고 사전학습을 통해 학습 효율이 비약적으로 개선되었다는 특징이 있다. 본 논문에서는 사전학습 언어 모델들을 이용하여 음식점, 배달전문점 등 음식 업종에서 발생한 고객 발화 의도를 분류하고 모델별 성능을 비교하여 최적의 모델을 제안하고자 한다. 연구결과, 사전학습 모델의 한국어 코퍼스와 Vocab 사이즈가 클수록 고객의 발화 의도를 잘 예측하였다. 한편, 본 연구에서 발화자의 의도를 크게 문의와 요청으로 구분하여 진행하였는데, 문의와 요청의 큰 차이점인 '물음표'를 제거한 후 성능을 비교해본 결과, 물음표가 존재할 때 발화자 의도 예측에 좋은 성능을 보였다. 이를 통해 음식 업종에서 발화자의 의도를 예측하는 시스템을 개발하고 챗봇 시스템 등에 활용한다면, 발화자의 의도에 적합한 서비스를 정확하게 적시에 제공할 수 있을 것으로 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.