Annual Conference on Human and Language Technology
/
1998.10c
/
pp.419-424
/
1998
본 논문에서는 단어들의 분포적 특성을 이용하여 자동으로 단어를 군집화(clustering) 하는 기법을 제시한다. 제안된 군집화 기법에서는 단어들 사이의 거리(distance)를 가상 공간상에 있는 두 단어의 평균점에 대한 불일치의 합(total divergence to the average)으로 측정하며 군집화 알고리즘으로는 최소 신장 트리(minimal spanning tree)를 이용한다. 본 논문에서는 이 기법에 대해 두 가지 실험을 수행한다. 첫 번째 실험은 코퍼스에서 상위 출현 빈도를 가지는 약 1,200 개의 명사들을 의미에 따라 군집화 하는 것이며 두 번째 실험은 이 논문에서 제시한 자동 군집화 방법의 성능을 객관적으로 평가하기 위한 것으로 가상 단어(pseudo word)에 대한 군집화이다. 실험 결과 이 방법은 가상 단어에 대해 약 91%의 군집화 정확도와(clustering precision)와 약 81%의 군집 순수도(cluster purity)를 나타내었다. 한편 두 번째 실험에서는 평균점에 대한 불일치의 합을 이용한 거리 측정에서 나타나는 문제점을 보완한 거리 측정 방법을 제시하였으며 이를 이용하여 가상 단어 군집화를 수행한 결과 군집화 정확도와 군집 순수도가 각각 약 96% 및 95%로 향상되었다.
Journal of the Korea Society of Computer and Information
/
v.19
no.3
/
pp.17-24
/
2014
In this paper, we propose a mobile application categorization method using word cluster information. Because the mobile application description can be shortly written, the proposed method utilizes the word cluster seeds as well as the words in the mobile application description, as categorization features. For the fragmented categories of the mobile applications, the proposed method generates the word clusters by applying the frequency of word occurrence per category to K-means clustering algorithm. Since the mobile application description can include some paragraphs unrelated to the categorization, such as installation specifications, the proposed method uses some word clusters useful for the categorization. Experiments show that the proposed method improves the recall (5.65%) by using the word cluster information.
Kim, Se-Jun;Lim, Hwan-Hee;Lee, Byung-Jun;Kim, Kyung-Tae;Youn, Hee-Yong
Proceedings of the Korean Society of Computer Information Conference
/
2019.01a
/
pp.31-32
/
2019
본 논문에서는 최근 빅데이터 활용 분야의 큰 이슈인 트위터 메시지의 효율적인 감정 분석을 위한 POS 기반의 단어 군집화 기법을 제안하였다. 기존에 군집화를 통한 다양한 텍스트 감정 분석 기법이 제시되어 왔으나, 군집화 된 기능과 분류 결과 간의 관련성에 대한 연구는 미흡하였다. 또한 모든 단어에 대한 감정 분석은 노이즈로 작용될 수 있는 단어로 인해 정확도가 감소할 수 있다. 본 논문에서는 이를 해결하기 위하여 Chi Square 기법을 통하여 분석 결과에 영향을 미치는 단어에 가중치를 부여함으로써 정확도를 향상시킨다.
In this paper, we describe the design and the implementation of word clustering system using a definition of an entry word in the dictionary, called a dictionary definition. Generally word clustering needs various features like words and the performance of a system for the word clustering depends on using some kinds of features. Dictionary definition describes the meaning of an entry in detail, but words in the dictionary definition are implicative or abstractive, and then its length is not long. The word clustering using only features extracted from the dictionary definition results in a lots of small-size clusters. In order to make large-size clusters and improve the performance, we need to transform the features into more general words with keeping the original meaning of the dictionary definition as intact as possible. In this paper, we propose two methods for extending the dictionary definition using ontology. One is to extend the dictionary definition to parent words on the ontology and the other is to extend the dictionary definition to some words in fixed depth from the root of the ontology. Through our experiments, we have observed that the proposed systems outperform that without extending features, and the latter's extending method overtakes the former's extending method in performance. We have also observed that verbs are very useful in extending features in the case of word clustering.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.18
no.5
/
pp.25-30
/
2018
Recently with the development of Internet technology, a lot of research area such as retrieval and extracting data have getting important for providing the information efficiently and quickly. Especially, the technique of analyzing and finding the semantic similar words for given korean word such as compound words or generated newly is necessary because it is not easy to catch the meaning or semantic about them. To handle of this problem, word clustering is one of the technique which is grouping the similar words of given word. In this paper, we proposed the korean language clustering technique that clusters the similar words by embedding the words using Word2Vec from the given documents.
Journal of the Korean Institute of Intelligent Systems
/
v.22
no.2
/
pp.205-211
/
2012
The retrieved documents have to be transformed into proper data structure for the clustering algorithms of statistics and machine learning. A popular data structure for document clustering is document-term matrix. This matrix has the occurred frequency value of a term in each document. There is a sparsity problem in this matrix because most frequencies of the matrix are 0 values. This problem affects the clustering performance. The sparseness of document-term matrix decreases the performance of clustering result. So, this research uses the factor score by factor analysis to solve the sparsity problem in document clustering. The document-term matrix is transformed to document-factor score matrix using factor scores in this paper. Also, the document-factor score matrix is used as input data for document clustering. To compare the clustering performances between document-term matrix and document-factor score matrix, this research applies two typed matrices to self organizing map (SOM) clustering.
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.268-271
/
2022
단어 의미 모호성 해소는 동형이의어의 의미를 문맥에 맞게 결정하는 일이다. 최근 연구에서는 희소 데이터 처리를 위해 시소러스를 사용해 의미 어휘를 압축하고 사용하는 방법이 좋은 성능을 보였다[1]. 본 연구에서는 시소러스 없이 군집화 알고리즘으로 의미 어휘를 압축하는 방법의 성능 향상을 위해 두 가지 방법을 제안한다. 첫째, 의미적으로 유사한 의미 어휘 집합인 범주(category) 정보를 군집화를 위한 초기 군집 생성에 사용한다. 둘째, 다양하고 많은 문맥 정보를 학습해 만들어진 품질 좋은 벡터를 군집화에 사용한다. 영어데이터인 SemCor 데이터를 학습하고 Senseval, Semeval 5개 데이터로 평가한 결과, 제안한 방법의 평균 성능이 기존 연구보다 1.5%p 높은 F1 70.6%를 달성했다.
Journal of the Korea Society of Computer and Information
/
v.20
no.4
/
pp.17-23
/
2015
In this paper, we propose a mobile app clustering method using word clusters. Considering the quick change of mobile app trends, the proposed method divides the mobile apps into some semantically similar mobile apps by applying a clustering algorithm to the mobile app set, rather than the predefined category system. In order to alleviate the data sparseness problem in the short mobile app description texts, the proposed method additionally utilizes the unigram, the bigram, the trigram, the cluster of each word. For the purpose of accurately clustering mobile apps, the proposed method manages to avoid exceedingly small or large mobile app clusters by using the word clusters. Experimental results show that the proposed method improves 22.18% from 57.48% to 79.66% on overall accuracy by using the word clusters.
Proceedings of the Korea Information Processing Society Conference
/
2012.04a
/
pp.1101-1104
/
2012
단어 필터링은 유해정보를 차단위한 기본적인 기능이다. 그러나 악의적인 사용자는 필터링 시스템을 우회하기 위하여 금지 단어에 의도적인 변형을 가한다. 이에 대응하기 위해 일정 오류를 허용하여 필터링을 수행하는 근사 단어 필터링이 있다. 근사 단어를 검색하기 위한 문자열 색인 방법으로는 주로 기준 단어(Pivot)을 이용한 유클리드 공간에의 사상을 이용하는데, 이는 단어 필터링에 응용하기에는 근본적인 구조상의 한계점이 있다. 본 논문에서는 필터링 대상이 되는 단어 집합 내에서 군집화를 수행하여 계층적인 자료구조를 구성하고, 단어 필터링을 위한 필터링 질의(Filtering query)를 정의한 뒤 그에 적합한 탐색 상의 적용에 관하여 설명한다. 실험 결과 기존의 기준 단어(Pivot)을 이용한 색인 기법에 비하여 16.9%~26.6%의 탐색 속도 향상을 확인할 수 있었다.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.195-198
/
2021
기존 연구에 따르면, 시소러스의 계층적 관계를 기반으로 압축한 의미 어휘 태그를 단어 의미 모호성 해소에 사용할 경우, 그 성능이 향상되었다. 본 논문에서는 시소러스를 사용하지 않고, 국어 사전에 포함된 단어의 의미 정의를 군집화하여 압축된 의미 어휘 태그를 만드는 방법을 제안한다. 또, 이를 이용하여 효율적으로 단어 의미 모호성을 해소하는 BERT 기반의 딥러닝 모델을 제안한다. 한국어 세종 의미 부착 말뭉치로 실험한 결과, 제안한 방법의 성능이 F1 97.21%로 기존 방법의 성능 F1 95.58%보다 1.63%p 향상되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.