• Title/Summary/Keyword: 단부평판

Search Result 10, Processing Time 0.021 seconds

Initial Stiffness of Beam Column Joints of PCS Structural Systems (PCS 구조 시스템 접합부의 초기 강성에 대한 연구)

  • Park, Soon-Kyu;Kim, Moo-Kyung
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.271-282
    • /
    • 2008
  • Specific joint devices composed of end-plates and through bolts are under development to assemble steel beams to PC columns efficiently by dry construction method for the PCS structural system, of which major structural components are precast concrete columns and steel beams. Seismic performance of the joint devices had been evaluated by experimental tests in the previous studies and it was showed that all the performance requirements regarding to strength deterioration, stiffness degradation and energy dissipation capacity were satisfied to the criteria of ACI requirements, but the initial stiffness was not. In order to find out possible causes of the insufficient rigidity of the joint devices and provide the proper measures to improve the performance of the joint accordingly, numerical analyses were carried out by using ABAQUS. Parameters, such as thickness of neoprene pad, conditions of surface between PC column and end-plate, magnitude of pretension forces of through bolts, stiffness of end-plate were taken into consideration. As the result, it was found that the rigidity of the PCS system was negatively affected by the magnitude of initial gaps between PC columns and end-plates, and insufficient stiffness of neoprene fillers and end plates. In order to improve the initial stiffness performance of the joints, measures such as increase of the magnitude of pretension forces on through bolts and increase of the stiffness of end-plate by reducing the bolt pitch and providing adequate stiffeners are recommended.

Nonlinear Finite Element Analysis Model for Ultimate Capacity Estimation of End-Plate Connection (단부평판 접합부의 극한저항능력 평가를 위한 비선형 유한요소해석 모델)

  • 최창근;정기택
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.10a
    • /
    • pp.23-28
    • /
    • 1992
  • The ultimate capacity of end-plate connection is investigated through nonlinear finite element analysis. The example models are divided into stiffened case and unstiffened one. The refined finite element models are analyzed by utilizing a general purpose structural analysis computer program ADINA and the moment-rotation relationships of the connection are determined. The results are compared with the regression equation deduced by Krishnamurthy. It is planned to deduce a bilinear regression equation through a parametric study on various dimensions of the connection.

  • PDF

An Experimental study on the Bolted Moment Connection between H-Beam and CFT Column (CFT기둥과 H-형강보의 볼트 접합부에 관한 실험적 연구)

  • Park, Soon Kyu;Roh, Hawn Kewn
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.789-799
    • /
    • 1998
  • The purpose of this study is to propose the prototypes of bolted end plate moment connection between CFT column and H-beam sections. Nine different types of bolt are designed in this study. The shapes of those bolt are straight. bent, hooked or stud-type. The end plate moment connection between CFT column and H-beam sections which are jointed by those bolts are studied experimentally to compare their performances. The simple beam bending tests are carried out to investigate the structural behavior of beam-to-column connections. The experimental results show that some of the bolted end plate connection types have quite good performance in the structural behavior but still have a lot of week points to be solved for the efficiency of construction.

  • PDF

Simplified Estimation of the Ultimate Strength of Ship Panels using Statistical Data of Actual Ships (건조선 통계자료를 이용한 선박 판부재의 최종강도 간이추정)

  • Oi-H. Kim;Juh-H. Ham;Ul-N. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.4
    • /
    • pp.127-135
    • /
    • 1993
  • The ultimate strength formulas of ship panels are suggested in a simple and suitable form. Firstly, these formulas are derived from a full description of the variables that govern plate strength by using statistical data of actual ships. Secondly, under the assumption of plate mid-edge collapse using the Von-Mises' yield criterion and the new buckling formula, a general equation for the ultimate strength estimation is also derived. The existing test data are compared with these new formulas and a good correlation is shown.

  • PDF

Numerical Prediction of Ultimate Strength of RC Beams and Slabs with a Patch by p-Version Nonlinear Finite Element Modeling and Experimental Verification (p-Version 비선형 유한요소모델링과 실험적 검증에 의한 팻취 보강된 RC보와 슬래브의 극한강도 산정)

  • Ahn Jae-Seok;Park Jin-Hwan;Woo Kwang-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.4
    • /
    • pp.375-387
    • /
    • 2004
  • A new finite element model will be presented to analyze the nonlinear behavior of RC beams and slabs strengthened by a patch repair. The numerical approach is based on the p-version degenerate shell element including theory of anisotropic laminated composites, theory of materially and geometrically nonlinear plates. In the nonlinear formulation of this model, the total Lagrangian formulation is adopted with large deflections and moderate rotations being accounted for in the sense of von Karman hypothesis. The material model is based on hardening rule, crushing condition, plate-end debonding strength model and so on. The Gauss-Lobatto numerical quadrature is applied to calculate the stresses at the nodal points instead of Gauss points. The validity of the proposed p-version nonlinear finite element model is demonstrated through the load-deflection curves, the ultimate loads, and the failure modes of RC beams or slabs bonded with steel plates or FRP plates compared with available result of experiment and other numerical methods.

Study on copper end-tab shape for maximum heat discharging performance (방열 성능 향상을 위한 구리 엔드 탭의 최적형상 연구)

  • Choi, Yeou-Myeong;Choi, Yoon-Hwan;Cho, Sang-Myung;Park, Jung-Hyun;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • When implementing butt joint welding of two plates, it is useful to attach end-tabs made of a metal with high heat conductivity (e.g., copper) at the front and back sides of the welded plates to prevent the bead from rolling down and prevent defects that may occur at the tips of the weld zone. In this study, the fin shape, which is known to have good heat discharging characteristics by natural convection, has been applied to enhance the cooling performance of the end-tab. From both experiment and numerical analysis, it was confirmed that end-tabs with fin-shaped holes have better heat discharging performance than end-tabs without holes. Through thermal and fluid flow analysis, the cooling rates of end-tabs with different hole shapes were estimated in order to figure out characteristics of shape factor that are important for the heat discharging performance. As a result, we found that the structure including vertical fins with optimal fin gap was the best-performing shape.

A Development of Seismic Rehabilitation Method of RC Buildings Strengthened with X-Bracing Using Carbon Fiber Composite Cable (X-가새형 탄소섬유케이블을 이용한 중·저층 철근콘크리트 건물의 내진보강법 개발)

  • Lee, Kang-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.1-9
    • /
    • 2014
  • Improving the earthquake resistance of buildings through seismic retrofitting using steel braces can result in brittle failure at the connection between the brace and the building, as well as buckling failure of the braces. In this study, a non-compression cross-bracing system using the Carbon Fiber Composite Cable (CFCC), which consists of CFCC bracing and bolt connection was proposed to replace the conventional steel bracing. This paper presented the seismic resistance of a reinforced concrete frame strengthened using CFCC X-bracing. Cyclic loading tests were carried out, and the maximum load carrying capacity and ductility were investigated, together with hysteresis of the lateral load-drift relations. Test results revealed that the CFCC X-bracing system installed RC frames enhanced markedly the strength capacity and no buckling failure of the bracing was observed.

Effect of the Semi-circular Relieving Groove on the Stress Concentration at the Fillet of the Stepped Bar under Axial Tension (축인장하(軸引張下)의 평판(平板)의 단부(段部) Fillet 근처(近處)의 Relieving Groove가 응력집중(應力集中)에 미치는 영향(影響))

  • Hyo-Chul,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.6 no.2
    • /
    • pp.5-10
    • /
    • 1969
  • A stepped bar with seimi-circular stress relieving groove near the fillet was subjected by axial tension in a polarized light field. On the stress concentration factor, the effect of the ratios of the fillet radius, the distance between two relieving grooves and the groove radius to the breath of the narrower portion of the stepped bar have been investigate. Observing the stress concentration in 48 models with various proportions, the conclusion arrived at were as follow: 1) If the fillet radius of the stepped bar is larger than half breadth of the narrower portion, the reduction of the stress concentrations can not be expected. 2) If the fillet radius is smaller than half breadth of the narrower portion of the stepped bar, the stress concentration can be droped to the reasonable range. 3) When the groove radius is larger than a quarter of the difference between the distance of two relieving grooves and the breadth of the stepped bar and smaller than a half of that, the stress concentration factors can have their possible minimum value. 4) When the sun of the breadth of the narrower portion of the stepped bar and twice of the relieving groove radius is smaller than the distance between two relieving grooves, minimum stress concentration can be obtained.

  • PDF

Experimental Test for Seismic Performance of PCS Structural System (PCS 구조 시스템의 내진 성능 분석)

  • Park, Soon-Kyu;Yeo, In-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.313-322
    • /
    • 2007
  • The PCS system, which consists of precast concrete column and steel beam, is a kind of composite structural systems. In this paper, experimental study has been conducted to analyze seismic performance of bolted beam-to-column connections for the PCS system. Based on experimental results from the seismic testing of eight interior PCS specimens, it shows that behavior of PCS system is satisfactory to seismic performance criteria of ACI such as strength deterioration, stiffness degradation and energy dissipation capacity except initial stiffness. All of the specimens maintain their strength at large levels of story drift without significant loss of stiffness and show high ductility level for inelastic behavior. The energy dissipation capacity is two times greater than requirement of ACI criterion. But the initial stiffness of all specimens does not satisfy ACI criterion, and this phenomenon is similar to the other composite structural systems such as RCS, CFT system.

Evaluation of Surface Crack and Blind Crack by Induced Current Focusing Potential Drop(ICFPD) Technique (집중유도형 교류전위차법에 의한 표면결함 및 이면결함의 평가에 관한 연구)

  • Kim, Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.16 no.2
    • /
    • pp.86-94
    • /
    • 1996
  • In the life management safety evaluation of constructs base on a fracture mechanics, the size of defect is the very important parameter. ICFPD (Induced Current Focusing Potential Drop)technique has been developed for detecting and sizing of defects that exist not only on surface but also inside and interior of structural components. The principle of this technique is to induce a focusing current at an exploration region by a straight induction wire through which an alternating current (AC)flows that has constant amplitude and frequency. The potential distributed on the surface of metallic material is measured by potential pick-up pins that are settled on the probe. In this paper, this NDI technique was applied to the evaluation of surface cracks and blind cracks in plate specimens. The results of this study show that in the case of surface crack, the distribution of potential drop is varied with the inched angle of surface crack, and the potential drops in the crack region and the crack edge region are varied with the inclined angle and depth of crack. The distribution of potential drop for the blind crack is distingulished from that for the surface crack, and the potential drop in the crack region is varied with the depth of crack.

  • PDF