• Title/Summary/Keyword: 단부정착

Search Result 53, Processing Time 0.021 seconds

An Experimental Study on Flexural Performance Evaluation of RC Beams Strengthened with Anchored CFRP Plates (CFRP판을 단부정착한 RC보의 휨성능 개선에 관한 실험적 연구)

  • Kim, Hyung-Jin;Hong, Ki-Nam;Han, Sang-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.4
    • /
    • pp.167-174
    • /
    • 2006
  • The purpose of this paper is to analyse and compare experimentally flexural behavior of RC beams strengthened with CFRP plates by different methods, which are divided into three classes: externally-bonded without end anchorage, externally-bonded with end anchorages, and anchored after prestressing of CFRP plates. Test results show that the RC beams strengthened with end anchorages have the improvement of ductility and flexural performance evaluation including ultimate strength and deflection, compared with only external bonding. Especially, RC beams with prestressed and anchored CFRP plates increase ultimate strength and ductility significantly.

Flexural Behavior of RC Beams Strengthened with CFRP Plate Using Multi-directional Channel-type Anchorage System (다방향 채널형 단부정착장치를 이용한 CFRP판 보강 RC 보의 휨거동)

  • Hong, Ki Nam;Han, Sang Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.171-180
    • /
    • 2008
  • The aim of this paper is to clarify the structural performance of RC beams strengthened with Carbon Fibre Reinforced Polymer(CFRP) plates using channel-type anchorage system. Twelve RC beams were specifically designed without and with a channel-type anchorage system, which was carefully detailed to enhance the benefits of the strengthening plates. All the twelve beams were identical in terms of their geometry but varied in their internal reinforcement, concrete strength. All the beams were tested under four point bending and extensively instrumented to monitor strains, cracking, load capacity and failure modes. The structural response of all the twelve beams is then critically analyzed in terms of deformability, strength and failure processes. It is shown that with a channel-type anchorage system, a brittle debonding failure of a strengthened beam can be transformed to an almost ductile failure with well-defined enhancement of structural performance in terms of both deformation and strength.

Pullout Test of Reinforcement with End Mechanical Anchoring Device (단부 기계적 정착장치를 갖는 철근의 뽑힘강도)

  • 김용곤;임원석;최동욱
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.430-439
    • /
    • 2002
  • The development of reinforcing steel is required in reinforced concrete structures. The standard hooks that have been widely used for the tensile development in the beam-column joints tend to create difficulties of construction such as steel congestion as the member cross sections are becoming smaller due to the use of higher strength concrete and higher grade steel. Using the reinforcing bars with end mechanical anchoring device (headed reinforcement) provides potential economies in construction such as reduction in development lengths, simplified details, and improved responses to cyclic loadings. In this paper, the pullout strengths and behaviors of the headed reinforcement were experimentally studied. In 33 pullout tests performed using D25 deformed reinforcing bars, the test parameters were embedment depth, edge distance, head size, and the use of transverse reinforcement. The pullout strengths determined from tests closely agreed with the pullout strengths predicted using the CCD method. The pullout strengths increased with increasing embedment depths nd edge distances. The strengths tend to increase with the use of larger heads. From the experimental program where the effect of the transverse reinforcement was examined, a modification factor to the CCD was suggested to represent the effect of such reinforcement that is installed across the concrete failure plane on the pullout strengths.

Anchorage Behavior of Bi Prestressed Concrete Girders (프리스트레스트 콘크리트거더의 정착구 거동 분석)

  • Lee, Pil-Goo;Kim, Choong-Eon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.361-364
    • /
    • 2008
  • This study was performed to estimate the anchorage behavior for Bi Prestressed Concrete Girder(Bicon girder) which could introduce effectively prestressed forces into concrete girders. A bicon girder is manufactured by means of introducing pure bending moment that prestress simultaneously the compressive member(steel bar) and the tensile member(steel tendon). Therefore, the steel bar and the steel tendon must be unified in both ends and compressive and tensile force be offset. Anchorage dimension of 6 test specimens was designed under PTI specification which defined maximum stress and deformation to estimate structural behavior. Test results showed that the stress and the deformation of anchorage were within limits if the steel bar behaviored elastically.

  • PDF

Anchorage efficiency of mold-type anchorage for CFRP plates (CFRP판 긴장재를 위한 부착형 정착장치의 정착성능)

  • Park, Jong-Sup;Park, Young-Hwan;Jung, Woo-Tai
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.169-172
    • /
    • 2008
  • Carbon fiber reinforced polymer (CFRP) laminates can be used more efficiently in strengthening applications by applying prestress to the CFRP laminates. A key problem for prestressing with CFRP laminates is anchoring the laminates. These may include fracture to the CFRP laminates due to excessive gripping force or slippage of the CFRP laminates out of the anchorage zone caused by low friction between the anchor device and the lamiantes. The main objective of this study is the development of an applicative mold-type anchorage system for prestressed CFRP laminates through experimental study. The experimental parameters were the type of anchorage detail and the effect of surface treatment. The test results showed that the developed anchor assures 100% CFRP laminate strength.

  • PDF

Shear Strength of SFRC Deep Beam with High Strength Headed Reinforcing Tensile Bars (고강도 확대머리 인장철근을 가지는 SFRC 깊은 보의 전단강도)

  • Kim, Young-Rok;Lee, Chang-Yong;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.111-117
    • /
    • 2019
  • Shear experiments were carried out to evaluate shear performance of SFRC deep beams with end-anchorage of SD600 high strength headed reinforcing tensile bars. The experimental variables include the end-anchorage methods of tensile bars (headed bar, straight bar), the end-anchorage lengths, and the presence of shear reinforcement. Specimens with a shear span ratio of 1 showed a pattern of the shear compression failure with the slope cracks progressed after the initial bending crack occurred. Specimens with end-anchorage of headed bars (H-specimens) showed a larger shear strengths of 5.6% to 22.4% compared to straight bars (NH-specimens). For H-specimens, bearing stress reached 0.9 to 17.2% of the total stress of tensile bars up to 75% of the maximum load, and reached 22.4% to 46%. This shows that the anchorage strength due to the bearing stress of headed bars has a significant effect on shear strength. The experimental shear strength was 2.68 to 4.65 times the theoretical shear strength by the practical method, and the practical method was evaluated as the safety side.

Evaluation on the Shear Performance of U-type Precast Prestressed Beams (U형 PSC보외 전단거동 평가)

  • Yu Sung-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.10-17
    • /
    • 2004
  • Shear tests were performed on four ends of full scale U-type beams which were designed by optimum process for the depth with a live load of 4903Pa. The ratio of width to depth of full scale 10.5 m-span, composite U-type beams with topping concrete was greater than 2. Following conclusions were obtained from the evaluation on the shear performance of these precast prestressed beams. 1) Those composite U-type beams performed homogeneously up to the failure load, and conformed to ACI Strength design methods in shear and flexural behaviors. 2) The anchorage requirements on development length of strand In the ACI Provisions preyed to be a standard to determine a failure pattern within the limited test results of the shallow U-type beams. 3) Those all shear crackings developed from the end of the beams did not lead to anchorage failure. However, initiated strand slip may leads the bond failure by increasing the size of diagonal shear crackings. 4) The flexural mild reinforcement around the vertical center of beam section was effective for developments of a ductile failure.

A Study on the Behavior of the Adhesive Failure of RC Beams Strengthened by Carbon Fiber Sheet (탄소섬유쉬트로 보강된 철근콘크리트보의 부착파괴거동에 관한 실험적 연구)

  • 박칠림;황진석;박형철;백명종
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.6
    • /
    • pp.157-164
    • /
    • 1997
  • 최근 손상된 구조물에 탄소섬유쉬트 보강공법이 많이 사용되고 있다. 탄소섬유쉬트 보강에 따른 휨내력의 증진이 이루어지기 위해서는 보와 탄소섬유쉬트의 일체거동이 이루어져야 하며, 쉬트단부에서 부착파괴가 발생하지 않아야 한다. 따라서 이번 실험에서는 탄소섬유쉬트의 보강매수에 따른 부착파괴의 거동을 살펴보았다. 전시험체에서 부착파괴가 발생하였으며 부착파괴가 발생한 하중의 크기는 보강매수에 관계없이 비슷하였다. 부착파괴의 거동은 순수부착파괴와 피복박리파괴로 구분될 수 있었으며 부착응력은 단부에서 집중현상이 나타났고 집중된 응력의 크기는 15.39~41.42kg/$\textrm{cm}^2$로 나타났다. 정착길이내의 평균부착응력은 6.85~8.99kg/$\textrm{cm}^2$으로서 평균 7.38kg/$\textrm{cm}^2$이고 이 값은 이론치인 6.19kg/$\textrm{cm}^2$보다 약간 높으며 설계부착응력인 6kg/$\textrm{cm}^2$에 부합되는 것으로 나타났다. 따라서 설계부착응력 6kg/$\textrm{cm}^2$은 정착길이의 설계시 합리적 값으로 평가되었다.

Analytical Study on Strength Resistance of Steel Beams with Stiffened Ends by Reinforced Concrete -difference of behavior with fixing plate- (복합보의 내력성능에 관한 연구 -정착판의 설치에 의한 거동의 차이-)

  • Kim, Seong Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.6
    • /
    • pp.681-690
    • /
    • 2000
  • Recently, a long span is often required for the spacious building. Therefore the increase of stiffness is necessary to prevent floor vibration and control deformation of the building under earthquake and wind loads. For this purpose, steel beams with stiffened ends by reinforced concrete are effective. To realize such an effective reinforcement method, the smoothening of bending and shear stress transmission at the boundaries between middle-part of the steel beam and both end-parts of the steel beam with stiffened ends by reinforced concrete is required. Therefore, the fixed plate was installed at the boundary with the view of transferring the stress smoothly. This paper evaluates the method of effective transmission of bending and shear stress through the numerical analysis that is based on advanced experimental tests.

  • PDF

Design and Full Size Flexural Test of Spliced I-type Prestressed Concrete Bridge Girders Having Holes in the Web (분절형 복부 중공 프리스트레스트 콘크리트 교량 거더의 설계 및 실물크기 휨 실험 분석)

  • Han, Man Yop;Choi, Sokhwan;Jeon, Yong-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.235-249
    • /
    • 2011
  • A new form of I-type PSC bridge girder, which has hole in the web, is proposed in this paper. Three different concepts were combined and implemented in the design. First of all, a girder was precast at a manufacturing plant as divided pieces and assembled at the construction site using post-tensioning method, and the construction period at the site will be reduced dramatically. In this way, the quality of concrete can be assured at the manufacturing factory and concrete curing can be well controlled, and the spliced girder segments can be moved to the construction site without a transportation problem. Secondly, a numerous number of holes was made in the web of the girder. This reduces the self-weight of the girder. But more important thing related to the holes is that about half of the total anchorages can be moved from the girder ends into individual holes. The magnitude of negative moment developed at girder ends will be reduced. Also, since the longitudinal compressive stresses are reduced at ends, thick end diaphragm is not necessary. Thirdly, Prestressing force was introduced into the member through multiple stages. This concept of multi-stage prestressing method overcomes the prestressing force limit restrained by the allowable stresses at each loading stage, and maximizes the magnitude of applicable prestressing force. It makes the girder longer and shallower. Two 50 meter long full scale girders were fabricated and tested. One of them was non-spliced, or monolithic girder, made as one piece from the beginning, and the other one was assembled using post-tensioning method from five pieces of segments. It was found from the result that monolithic and spliced girder show similar load-deflection relationships and crack patterns. Girders satisfied specific girder design specification in flexural strength, deflection, and live load deflection control limit. Both spliced and monolithic holed web post-tensioned girders can be used to achieve span lengths of more than 50m with the girder height of 2 m.