• Title/Summary/Keyword: 단부요소

Search Result 102, Processing Time 0.022 seconds

Development of a Rigid-ended Beam Element and Its Application to Simplify 3-Dimensional Analysis of Bracketed Frame Structures (강체 단부 보요소의 개발 및 브라켓이 있는 골조 구조의 3차원 해석 단순화를 위한 적용)

  • Seo, Seung Il;Lim, Seong Joon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.3
    • /
    • pp.76-84
    • /
    • 1997
  • At the initial design stage, for rapid evaluation of strength of ship structures, finite element analysis using beam elements is carried out in general. In beam modeling of ship structures, brackets are usually represented by rigid elements to simplify the analysis. Extent of rigid ends, which is called as a span point, can be determined from the three kinds of view points, i.e., bending, shearing and axial deformation. In this paper, a 2-dimensional novel beam element is developed and a method to replace the 3-dimensional analysis with 2-dimensional analysis is proposed. The developed novel beam element named rigid-ended beam element can consider the effect of three kinds of span points within one element, which was impossible in modeling with the ordinary beam element. Calculated results for the portal frame using the rigid-ended beam element agree with the results using membrane elements. And also, the proposed semi 3-dimensional analysis method which includes two step analysis using influence coefficients shows good accuracy. Structural analysis using the rigid-ended beam element and the semi 3-dimensional method is revealed to have good computing efficiency due to unnecessity of elements corresponding to the brackets and simplification of 3-dimensional analysis.

  • PDF

A Study on the Buckling Strength and Effective Length of Tubular Member with Gusset Plate Considering End Restraints (단부구속효과를 고려한 관통 가셋트 부착 강관부재의 좌굴내력 및 유효세장비 산정에 관한 연구)

  • Kim, Woo Bum
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.2
    • /
    • pp.159-165
    • /
    • 2003
  • A tubular member with through-gusset plate is often used to transmit axial compression in an electric transmission towers. In current code, the strength of tubular member is evaluated with an effective length factor k=0.9 without considering the deformation of boundary element. A buckling strength of member with end gusset plate is affected by stiffness ratio($\beta$) and the length ratio(G) between main tubular member and end gusset plate. In this study theoretical mechanism based on the elastic buckling behavior was investigated, and finite element analysis was performed to propose a formula for the buckling strength and effective length factor of tubular member in elsatic and inelastic ranges.

The Study of Stress Intensity Factors Near Tips of Crack of Different Size (크기가 상이(相異)한 할열(割裂) 양단부에서의 응력강도인자(應力强度因子)에 관한 연구)

  • Cha, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.62-67
    • /
    • 1988
  • 본연구(本硏究)는 응력강도인자(應力强度因子) 및 할열(割裂) 크기간의 기본적인 관계를 밝히기 위하여 실시하였으며, 이 응력(應力) 탄성인자(彈度因子)는 할열(割裂)의 크기와 위치를 포함한 재료(材料)의 기하학적(幾何學的) 특징을 갖는 유한요소법(有限要素法)에 의해 분석(分析)하였다. 그 결과 높은 응력(應力)이 할열(割裂)이 일어난 단부(端部)에서 일어났으며, 응력강도인자(應力强度因子)의 변화는 할열(割裂) 단부(端部)로부터의 거리에 변화하였다. 할열(割裂) 단부(端部) 요소(要素)의 크기는 응력강도인자(應力强度因子)에 현저하게 영향하였으며, 유한요소법(有限要素法)에서의 요소(要素)크기는 할열(割裂) 길이의 절반의 약 10% 정도였다.

  • PDF

Analytical Study on Structural Performance of Wire-Integrated Steel Decks with Varied Lattice End-Support Configurations (철선일체형 데크플레이트의 래티스 단부 지지형상과 구조성능에 대한 해석적 연구)

  • Sanghee Kim;Jong-Kook Hong;Deung-Hwan Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.95-102
    • /
    • 2023
  • This study investigated the structural performance of wire-integrated steel decks with varied lattice end support conditions through finite element analysis. The results indicated that the steel decks with the lattice foots positioned above the supporting structural member have the higher system stiffness compared to the cases with the lattice foots shifted away from the support. It is also observed that the contribution of the end vertical bars on both the system stiffness and the strength is negligible when the lattice foots are located on the support. It is, especially, revealed that the end vertical bars can be eliminated when the lattice foot length is not smaller than 40mm. The ultimate load-carrying capacity of the system is not significantly affected by the lattice end support condition. The failure mode of the system is the top bar buckling at the center of the deck plate, the lattice end buckling, and the combination of both depending of design intention.

Analysis of outlet edge cogging force at the Permanent Magnet Linear Synchronous Motor According to Difference of the Winding Method (권선방식 차이에 따른 영구자석 선형 동기 전동기의 단부 코깅력 해석)

  • Kim, Yong-Jae;Kim, Sung-Jin
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.6
    • /
    • pp.889-895
    • /
    • 2011
  • PMLSM is structurally simple and it have a lot of merits such high speed, high thrust force etc., but cogging force by slot-teeth structure of armature and cogging force by outlet edge effect occurs. This is the cause of thrust force ripple and generate the noise and vibration. Therefore, in this paper we proposed installation of an auxiliary pole to mover of the PMLSM in order to decrease cogging force by the outlet edge which came necessarily into being discontinuous arrangement of the armature. Also, outlet edge cogging force designed a form of the auxiliary pole which the minimum became, and we compared a outlet edge cogging force characteristic along a winding method of an armature as we used 2-D of finite element analysis.

Analytical and Experimental Study of an Unstiffened Extended End-Plate Connection (반복하중을 받는 비보강 확장 단부판 접합부의 해석 및 실험적 연구)

  • Kim, Hee Dong;Yang, Jae Guen;Pae, Da Sol
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.6
    • /
    • pp.439-448
    • /
    • 2016
  • Extended end-plate connections(EEPC) are a type of connection applied in Pre-Engineered Building structures comprising beam-column connections of steel structures or tapered members. Extended end-plate connections(EEPC) show different behavioral characteristics owing to the influence of plate thickness, gauge distance of high strength bolt, diameter of high strength bolt frame, and the number of high strength bolts. In the USA and Europe, extended end-plate connections(EEPC) are applied in beam-column connections of steel structures in various forms; however, these are not widely applied in structures in Korea.This can be attributed to the fact that the proposal of design strength types for extended end-plate connections(EEPC), proposal of connection specifications, evaluation of seismic performance, and are not being performed appropriately. Therefore, the purpose of this study is to provide basic data for the domestic application of Unstiffened extended endplate connections. To realize this, nonlinear finite element analysis was conducted on a 12-mm thick Unstiffened extended endplate connections.

Evaluation of the Energy Dissipation Capacity of an Unstiffened Extended End-plate Connection (비보강 확장단부판 접합부의 에너지소산능력 평가)

  • Lee, Soo Kueon;Yang, Jae Guen
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.2
    • /
    • pp.243-250
    • /
    • 2015
  • An extended end-plate connection displays different behavioral properties and energy dissipation capacity based on the thickness and length of the end-plate comprising the connection in the form of a beam-to-column moment connection, the number and diameter of the high strength bolt, the gauge distance of the high strength bolt, and the size and length of the welds. Such extended end-plate is applied to beam-to-column connections in various geometric forms in the US and European regions. Currently in Korea, however, the extended end-plate beam-to-column connection is not actively applied due to the lack of proper design formulas, the evaluation of the energy dissipation capacity, and the provision of construction guidelines. Accordingly, this study was conducted to provide the basic data for the proposal of a prediction model of energy dissipation capacity by evaluating the energy dissipation capacity of unstiffened extended end-plate connections with relatively thin end plate thicknesses. To achieve this, a three-dimensional nonlinear finite element analysis has been conducted on unstiffened extended end-plate connections, with the thickness of the end plate as the set variable.

Analytical Study on the Prying Action Force and Axial Tensile Stiffness of High-Strength Bolts Used in an Unstiffened Extended End-Plate Connection (비보강 확장단부판 접합부에 체결된 고장력볼트의 지레작용력 및 축방향 인장강성에 대한 해석적 연구)

  • Kim, Hee Dong;Yang, Jae Guen;Lee, Hyung Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.2
    • /
    • pp.251-260
    • /
    • 2015
  • The end plate connection is applied to beam-column moment connections in various forms. Such end plate connection displays changes in the behavioral characteristics, strength and stiffness, and energy dissipation capacity based on the thickness and length of the end plate, the number and diameter of the high strength bolt, the gauge distance of the high strength bolt, prying action force of the high strength bolt, and dimensions and length of the welds. Accordingly, this study has apprehended the axial tensile stiffness and prying action force of the high strength bolt connected on the tensile side based on the difference in thickness of the end plate, and was conducted to propose an analysis model for the prediction of such variables that affect the operating properties of the end plate. To achieve this, this study has conducted a three-dimensional non-linear finite-element analysis of the unstiffened expanding end plate connection by selecting only the thickness of the end plate as the variable.

Detection of Damage at the Ends of Members using Finite Model Updating and Semi Rigid Connection Model (모델개선기법과 반강접 접합부 모델을 이용한 부재단부 손상탐지)

  • Yu, Eun-Jong;Kim, Seung-Nam;Lee, Hyun-Kook;Choi, Hang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.692-695
    • /
    • 2010
  • 일반적으로 모델개선에서는 부재단위의 강성을 파악하기 때문에 구조물의 취약부인 부재단부의 손상이 집중될 경우 손상의 형태를 세밀히 파악하기 어려우며 손상된 구조물의 거동을 정확하게 모사하기 어려운 단점이 있었다. 이를 해결하기 위해서는 부재 단부에 발생한 손상을 고려할 수 있는 좀 더 정밀한 해석 모델을 통한 모델개선이 필요하다. 본 연구에서는 부재 단부에 반강접 접합을 가지는 해석모델을 사용해 모델 개선을 실시하고 이를 통해 접합부의 손상 평가와 손상 구조물의 거동을 파악하였다. 제안된 방법을 5층 1경간의 RC 벽식 실험체의 손상탐지에 적용하였으며 그 결과 부재단위 모델을 사용할 때보다 더욱 정확하게 구조물의 손상을 평가하고 거동을 모사할 수 있었다.

  • PDF

Design of Boundary Confinement of Structural Walls (구조벽의 단부 횡보강 설계)

  • Kang, Su-Min;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.877-887
    • /
    • 2003
  • For a performance-based design of structural walls, it is necessary to develop a rational design method for determining the length and detail of boundary confinement so as to satisfy the given ductility demand. In the present study, the curvature capacity of a structural wall with boundary confinement was estimated considering the effects of various design parameters. The curvature demand of the plastic hinge corresponding to the given design displacement was also determined. By equalizing the curvature capacity to the demand, a design method for determining the length of boundary confinement, was developed. According to the design method, the length of boundary confinement increases as axial compressive load and design displacement increase, and as concrete strength, wall thickness, amount of lateral reinforcement and aspect ratio decrease. A study was performed on details for effective lateral confinement of walls with rectangular cross-section. Based on the findings, design guidelines on spacings of ties and cross-ties were proposed.