• Title/Summary/Keyword: 단백질 가수분해 효소

Search Result 380, Processing Time 0.026 seconds

Studies on Physicochemical and Biological Properties of Depolymerized Alginate from Sea tangle, Laminaria japonicus by Thermal Decomposition 5. Effects of Depolymerized Alginate on Body Weight, Organ, Pancreatic and Small Intestinal Composition, and Small Intestinal Microvilli Structure in Rats (다시마 (Laminaria japonicus) Alginate의 가열가수분해에 따른 물리$\cdot$화학적 및 생물학적 특성에 관한 연구 5. 랫드의 체중, 장기, 췌장과 소장의 성분 및 소장융모의 미세구조에 미치는 저분자 Alginate의 영향)

  • KIM Yuck-Yong;CHO Young-Je
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.1
    • /
    • pp.21-26
    • /
    • 2001
  • To examine functionality of depolymerized alginate obtained by hydrolysis of alginate through a heating process at $121^{\circ}C$ on gastrointestinal physiology, the changes of body weight, organ weight and length, pancreatic and small intestinal composition, and light microscopy (LM) observation of small intestinal microvilli's appearances were checked in the rats. Rats were fed diets containing $1\%, 5\%, and 10\%$ of each depolymerized alginate (HAG-10, HAG-50, HAG-100) and alginate for 35 days, The feeding of 5 and $10\%$ HAG-50 and $10\%$ alginate diets for 35 days significantly depressed the body weight gain, but increased the length and weight of the small intestine and cecum in rats (p<0.01). Pancreatic protease activity was decreased significantly (p<0.01) in all groups except lo/o of HAG-10 diets, but the protein content increased in all groups, However, pancreatic amylase and lipase activities as well as DNA and RNA content were not significantly different. The small intestinal protein and the DNA content were the highest in diets fed $5\%$ HAG-50; RNA content increased significantly (p<0.01) in all groups except in the fiber-free diets. Light microscopy (LM) observation showed growth of small intestinal microvilli with numerous ridges; the multiplication of the convolution goblet cells in rats fed with diets containing $5\%$ of HAG-50 were more than others group.

  • PDF

Bacterial Toxin-antitoxin Systems and Their Biotechnological Applications (박테리아의 toxin-antitoxin system과 생명공학기술 응용)

  • Kim, Yoonji;Hwang, Jihwan
    • Journal of Life Science
    • /
    • v.26 no.2
    • /
    • pp.265-274
    • /
    • 2016
  • Toxin-antitoxin (TA) systems are ubiquitous genetic modules that are evolutionally conserved in bacteria and archaea. TA systems composed of an intracellular toxin and its antidote (antitoxin) are currently classified into five types. Commonly, activation of toxins under stress conditions inhibits diverse cellular processes and consequently induces cell death or reversible growth inhibition. These effects of toxins play various physiological roles in such as regulation of gene expression, growth control (stress response), programmed cell arrest, persister cells, programmed cell death, phage protection, stabilization of mobile genetic elements or postsegregational killing of plasmid-free cells. Accordingly, bacterial TA systems are commonly considered as stress-responsive genetic modules. However, molecule screening for activation of toxin in TA system is available as development of antimicrobial agents. In addition, cytotoxic effect induced by toxin is used as effective cloning method with antitoxic effect of antitoxin; consequently cells containing cloning vector inserted a target gene can survive and false-positive transformants are removed. Also, TA system is applicable to efficient single protein production in biotechnology industry because toxins that are site-specific ribonuclease inhibit protein synthesis except for target protein. Furthermore, some TA systems that induce apoptosis in eukaryotic cells such as cancer cells or virus-infected cells would have a wide range of applications in eukaryotes, and it will lead to new ways of treating human disease. In this review, we summarize the current knowledge on bacterial TA systems and their applications.

Characteristics of Korean Fish Fermentation Technology (우리나라 수산발효기술의 특색)

  • Lee, Cherl-Ho;Lee, Eung-Ho;Lim, Moo-Hyun;Kim, Soo-Hyun;Chae, Soo-Kyu;Lee, Keun-Woo;Koh, Kyung-Hee
    • Journal of the Korean Society of Food Culture
    • /
    • v.1 no.3
    • /
    • pp.267-278
    • /
    • 1986
  • The evolution of Korean fish fermentation technology was reviewed from the old literatures and the on-going processes were surveyed. The principles involved in the traditional fermentation methods were explained by the recent scientific findings. The fish fermentation technology be classified into two groups; jeot-kal process, where. salt is the only material added to the fish for fermentation, and sik-hae process, where cooked cereals, garlic and red pepper powder are added to the salted fish. A total of 46 kinds of jeot-kal was identified in a survey, depending on the raw materials used. The characteristic feature of Korean jeot-kal process is to produce fermented products which still has original shape after 2-3 months of fermentation to be used for side-dishes of rice meal, as well as fish sauce by keeping these products for longer time (over 6 months) for severe ansymematic hydrolysis to be used for the subingredient of Kimchi (Korean fermented vegetable food). The taste of jeot-kal is formed by the protein hydrolymates due to the action of salt-tolerant Pediococcus, Bacillus, Halobacterlum etc. When the taste of jeot-kal deteriorates, yeasts appear to dominate. In ski-hae fermentation, the safety of preserved fish is kept by the rapid decrease in pH resulting from the acid fermentation of added cereals. The roles of cid forming bacteria and proteloytic bacteria are important. The fermentation is completed in 2 weeks and the excess production of acid during prolonged storage limits the taste acceptability. The fish fermentation technology in Korea stands at important position in Korean food science and technology. since the processes of jeot-kal and soysauce have same root in the principle of microbial proteolysis and the processes of sik-hae and Kimchi in the microbial acid production principles.

  • PDF

FMDV 2C Protein of Foot-and-mouth Disease Virus Increases Expression of Pro-inflammatory Cytokine TNFα via Endoplasmic Reticulum Stress (구제역바이러스의 FMDV 2C 단백질은 소포체 스트레스를 통해서 염증 유도 사이토카인 TNFα의 발현을 증가시킴)

  • Kang, Hyo Rin;Seong, Mi So;Nah, Jin Ju;Ryoo, Soyoon;Ku, Bok Kyung;Cheong, JaeHun
    • Journal of Life Science
    • /
    • v.30 no.3
    • /
    • pp.285-290
    • /
    • 2020
  • Foot-and-mouth disease virus (FMDV), a member of the genus Aphthovirus in the Picornaviridae family, affects wild and domesticated ruminants and pigs. FMDV causes various clinical symptoms, including severe inflammation in infected tissue. Genome RNA of FMDV shows a positive single-strand chain approximately 8.3 kb long and encodes a single long open reading frame (ORF). The ORF is translated into structural and non-structural proteins by viral proteases. The FMDV 2C protein is one of the non-structural proteins encoded by FMDV and plays a critical role in FMD pathogenesis, including inflammation, apoptosis, and viral replication. In this study, we examined whether FMDV 2C induces intracellular expression of pro-inflammatory cytokine tumor necrosis factor alpha (TNFα). FMDV 2C expression in pig IBRS-2 cells increased mRNA and protein expression of TNFα at the transcriptional level via activation of TNFα promoter. Treatment with 4-phenylbutyric acid, an endoplasmic reticulum (ER) stress reducer, decreased TNFα expression induced by FMDV 2C. Activating transcription factor 4 (ATF4), a transcription factor mediating ER stress response, induced transactivation of TNFα promoter and expression of mRNA and protein of TNFα. However, the dominant negative mutant of ATF4 did not induce FMDV 2C-mediated TNFα expression. The results indicate that FMDV 2C protein increases clinical inflammation via ATF4-mediated TNFα expression and is associated with ER stress induction.

Characterization of an Extracellular Xylanase from Bacillus sp. HY-20, a Bacterium in the Gut of Apis mellifera (꿀벌(Apis mellifera)의 장내 세균인 Bacillus sp. HY-20이 분비하는 Xylanase의 특성)

  • Lee, Lan-Hee;Kim, Do-Young;Han, Mi-Kyoung;Oh, Hyun-Woo;Ham, Su-Jin;Park, Doo-Sang;Bae, Kyung-Sook;Sok, Dai-Eun;Shin, Dong-Ha;Son, Kwang-Hee;Park, Ho-Yong
    • Korean Journal of Microbiology
    • /
    • v.45 no.4
    • /
    • pp.332-338
    • /
    • 2009
  • A xylan-decomposing bacterium, HY-20, was isolated from the gut of a honeybee, Apis mellifera, and identified as Bacillus sp. The extracellular GH11 xylanase (XylP) gene (687-bp) of strain HY-20 encoded a protein of 228 amino acids with a deduced molecular mass of 25,522 Da and a calculated pI of 9.33. The primary structure of XylP was 97% identical to that of B. pumilus xylanase (GenBank accession no.: AY526092) that has not been characterized yet. The recombinant His-tagged enzyme (rXylP) overexpressed in Escherichia coli BL21 harboring pET-28a(+)/xylP was purified to electrophoretic homogeneity by cation exchange and gel permeation chromatographies. The purified enzyme exhibited the highest catalytic activity toward birchwood xylan at pH 6.5 and $50^{\circ}C$ and retained approximately 50% of its original activity when pre-incubated at $55^{\circ}C$ for 15 min. The recombinant enzyme was completely inactivated by $Hg^{2+}$ (1 mM) and N-bromosuccinimide (5 mM), while its activity was slightly stimulated by approximately 10% in the presence of $Mn^{2+}$ (1 mM), $Fe^{2+}$ (1 mM), and sodium azide (5 mM). rXylP was able to efficiently degrade various polymeric xylose-based substrates but PNP-sugar derivatives and glucose-based polymers were not susceptible to the enzyme.

Characterization of Neutral Invertase from Fast Growing Pea (Pisum sativum L.) Seedlings after Gibberellic Acid (GA) Treatment (GA 처리 후 급 성장하는 완두콩(Pisum sativum L.) 발아체로부터 분리된 중성 invertase의 특성)

  • Kim, Donggiun
    • Journal of Life Science
    • /
    • v.25 no.9
    • /
    • pp.1021-1026
    • /
    • 2015
  • Invertase (β-D-fructosfuranosidase, EC 3.2.1.26) catalyzes the hydrolysis of sucrose into D-glucose and D-fructose. Three biochemical subgroups of invertases have been investigated in plants: vacuolar (soluble acid), cytoplasmic (soluble alkaline), and cell wall-bound (insoluble acid) invertases. An isoform of neutral invertase was purified from pea seedlings (Pisum sativum L.) and treated with gibberellic acid (GA) by sequential procedures consisting of ammonium sulfate precipitation, ion-exchange chromatography, absorption chromatography, and reactive green-19 affinity chromatography. The results of the overall insoluble invertase purification were a 430-fold increase. The purified neutral invertase was not glycosylated and had an optimum pH between neutral and alkaline (pH 6.8-7.5). It was inhibited by Tris, as well as by heavy metals, such as Hg2+ and Cu2+. Typical Michaelis–Menten kinetics were observed when the activity of the purified invertase was measured, with sucrose concentrations up to 100 mM. The Km and Vmax values were 12.95 mM and 2.98 U/min, respectively. The molecular mass was around 20 kDa. The sucrose-cleaving enzyme activity of this enzyme is similar to that of sucrose synthase and fructosyltransferase, but its biochemical characteristics are different from those of sucrose synthase and fructosyltransferase. Based on this biochemical characterization and existing knowledge, neutral INV is an invertase isoform in plants.

A study of matrix metalloproteinase-9 inhibitor in Hovenia dulcis Thunberg (헛개나무내의 Matrix Metalloproteinase-9 활성 억제제에 관한 연구)

  • Kim, Eun-Ho;Lee, Kwang-Soo
    • Analytical Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.135-141
    • /
    • 2011
  • MMPs (Matrix metalloproteinases) are enzymes playing an important role to turnover and remodel main protein compositions of extracellular matrix. MMP-2 and MMP-9 of MMPs having a catalytic domain which is apart from a hemopexin-like domain part, are different from the other MMPs pertaining fibronectinlike domain close to hemopexin-like domain. It was reported that the development of MMP-9 restrainer can prevent the transfer of liver cancer. In this study, MMP-9 restrainers were extracted and purified from Hovenia dulcis Thunberg. The each fractionary part was examined to investigate the inhibitory effect on MMPs. Three compounds, compound A and B eluted with ethyl acetate (EA) and compound C with methanol, were identified by $^1H$ and $^{13}C$ NMR, GC/MS, and FT-IR. Compound A is considered as a kind of catechine type compound having a benzene ring substituted by hydroxyl and methoxyl groups. Compound B and C are nobiletin type compound pertaining a carbonyl group. Compound A, B and C showed 76%, 66% and 71% of inhibition effect on MMP-9 at 1.0% concentration, respectively. Compound A showed the best inhibition effect on MMP-9.

Cloning of Pig Kidney cDNA Encoding an Angiotensin I Converting Enzyme (돼지 신장의 Angiotensin I Converting Enzyme cDNA 클로닝)

  • Yoon, Jang-Ho;Yoon, Joo-Ok;Hong, Kwang-Won
    • Applied Biological Chemistry
    • /
    • v.49 no.4
    • /
    • pp.293-297
    • /
    • 2006
  • Angiotensin converting enzyme(ACE) is a zinc-containing dipeptidase widely distributed in mammalian tissues and is thought to play a significant role in blood pressure regulation by hydrolyzing angiotensin I to the potent vasoconstrictor, angiotensin II. Recently, the presence of ACE in pig ovary was reported and the ACE from pig kidney was isolated and characterized. However no nucleotide sequence of the ACE gene from pig is yet known. We report here the cloning of the ACE cDNA from pig kidney by using the reverse transcriptase-polymerase chain reaction. The complete amino acid sequence deduced from the cDNA contains 1309 residues with a molecular mass of 150 kDa, beginning with a signal peptide of 33 amino acids. Amino acid sequence analysis showed that pig kidney ACE is also probably anchored by a short transmembrane domain located near the C-terminus. This protein contains a tandem duplication of the two homologous amino acid peptidase domain. Each of these two domains bears a putative metal-binding site (His-Glu-Met-Gly-His) identified in mammalian somatic ACE. The alignment of pig ACE amino acid sequence with human, rabbit, and mouse reveals that both two domains have been highly conserved during evolution.

Expression of Clostridium thermocellum Endoglucanase Gene in Lactobacillus bulgaricus and Lactobacillus plantarum and in vitro Survival Characteristics of the Transformed Lactobacilli (Lactobacillus bulgaricus와 Lactobacillus plantarum 균주에서 Clostridium thermocellum 유래 endoglucanase의 발현과 발현 유산균의 in vitro 생존 특성)

  • Cho, J.S.;Kang, S.H.;Lee, H.G.;Lee, H.J.;Woo, J.H.;Moon, Y.S.;Yang, C.J.;Choi, Y.J.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.659-666
    • /
    • 2003
  • Endoglucanase A from Clostridium thermocellum which is resistant to pancreatic proteinase was selected out of numbers cellulases then were expressed in lactobacilli. Recombinant lactobacilli expression vector, pSD1, harboring the endoglucanase gene from C. thermocellum under the control of its own promoter, was constructed. Both L. bulgaricus and L. plantarum were electrotransformed with pSD1. The endoglucanase activities of 0.120 and 0.144 U/ml were found in culture media of L. bulgaricus and L. plantarum containing pSD1, respectively. In vitro survival characteristics of the transformed lactobacilli were tested. Both L. bulgaricus and L. plantarum showed a similar resistance to low pH 3. Moreover, L. plantarum was bile-salt resistant in the presence of 0.3 and 1% oxgall. L. bulgaricus and L. plantarum showed a rather homogenous resistant pattern against the tested antibiotics. Both of the strains were resistant to amikacin, gentamicin, streptomycin, kanamycin, and colistin.

Effect of a Fibrinolytic Enzyme (BK-17) from Bacillus subtilis on Apoptosis Induction in AGS and T24 Human Carcinoma Cells (인간 암세포인 AGS와 T24에서의 apoptosis 유도에 미치는 Bacillus subtilis 혈전용해효소 BK-17의 영향)

  • Baik, Hyun;Seo, Min Jeong;Kim, Min Jeong;Lee, Hye Hyeon;Kang, Byoung Won;Park, Jeong Uck;Choi, Yung Hyun;Seo, Kwon Il;Jeong, Yong Kee
    • Journal of Life Science
    • /
    • v.23 no.10
    • /
    • pp.1252-1259
    • /
    • 2013
  • To investigate the effects of a fibrinolytic enzyme, BK-17, on the growth of human cancer cells, we performed various biochemical experiments, including cell proliferation and viability, and investigated subsequent morphological changes and apoptosis induction. BK-17 treatment of AGS human gastric and T24 human bladder carcinoma cells decreased the viability and the proliferation of the cells in a concentration-dependent manner. Microscopic studies indicated that the antiproliferative effects of the BK-17 treatment were associated with morphological changes, such as membrane shrinking, cell rounding up, and the formation of apoptotic bodies, indicating that BK-17 induced apoptosis in the cell lines. Of note, RT-PCR and Western blotting data indicated that the BK-17 treatment induced the down-regulation of antiapoptotic Bcl-2 members, Bcl-2 and $Bcl-X_L$, and the up-regulation of proapoptotic Bax members, Bax and Bad, in the AGS cells. BK-17-induced apoptosis of AGS cells was involved in the proteolytic activation of caspase-3, caspase-8, and caspase-9. Taken together, these findings suggest that BK-17 is associated with the induction of apoptotic cell death.