• Title/Summary/Keyword: 단기수요예측

Search Result 141, Processing Time 0.036 seconds

Genetic Algorithm-Based Feature Selection Scheme for Short-Term Load Forecasting (단기 전력수요 예측을 위한 유전 알고리즘 기반의 특징 선택 기법)

  • Park, Sungwoo;Moon, Jihoon;Hwang, Eenjun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.813-816
    • /
    • 2019
  • 최근 에너지 부족 문제 및 환경 문제의 해결수단으로 스마트 그리드가 많은 주목을 받고 있다. 스마트 그리드 기술은 에너지를 효율적으로 사용하는 데 도움을 주며, 이를 위해서는 더욱 정확한 전력수요 예측이 필요하다. 다양한 기계학습 기법 기반의 전력수요 예측 모델은 좋은 예측 성능을 보이지만 입력 변수의 개수가 증가할수록 처리해야 하는 데이터의 양이 기하급수적으로 증가한다는 단점이 존재한다. 또한, 불필요한 데이터를 입력 변수로 선정할 경우에는 모델의 정확도가 저하될 수도 있다. 이러한 문제를 해결하기 위해 다양한 특징 선택 기법들이 제안되었지만, 기존의 특징 선택 기법은 모델의 성능을 고려하지 않았기 때문에 실제 적용 시 오히려 모델의 성능이 저하될 수도 있다. 이에 본 논문은 유전 알고리즘을 기반으로 한 특징 선택 기법을 제안한다. 유전 알고리즘을 통해 각 모델에 맞는 최적의 입력 변수를 선택함으로써 빠른 학습 속도와 높은 정확도를 기대할 수 있다.

New and renewable Energy and Critical Raw Materials (신재생에너지와 Critical Raw Materials)

  • Kim, Yujeong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.155-155
    • /
    • 2011
  • 신재생에너지 수요가 확대됨에 따라 신재생에너지 관련 제품에 소요되는 물질에 대한 관심이 확대되고 있다. 이들 물질은 공급리스크가 존재하는 희유금속이 주를 이루고 있다. 본 연구에서는 신재생에너지 등의 high tech 기술 확대로 인한 희유금속의 수요 및 공급을 전망하고 있는 미국의 critical raw material 관리 전략을 살펴보고자 한다. 미국은 2010년 12월 미국 에너지성(DOE : Department of Energy)에서 위기 물질 전략(Critical Materials Strategy)에 관한 리포트를 공표하였다. 클린 에너지 기술 4개 분야(영구자석, 선진 전지, 태양전지 박막, 형광 물질)에서 핵심이 되는 물질(희유금속 등)의 수급 불균형이 일어날 가능성에 대해 조사를 실시하여 리스크 평가하여 단기, 중단기로 구분하여 위기물질을 선정하였다. 클린 에너지 기술 4개 분야에서 핵심이 되는 물질(네오디움, 디스프로슘, 코발트, 리튬, 랜턴, 세륨, 테룰, 인듐, 갈륨, 유로피움, 테르비움, 이트륨)의 12광종 수급을 2025년까지 전망한 결과 전체적으로 단기(2010년~2015년)보다 중기(2015년~2025년)에 공급 부족이 확대한다고 예측되었다. 단기적으로는 인듐이 약간 부족하는 것 외에 디스프로슘과 이트륨에 관해서도 공급 부족할 것으로 예측되었다. 중기적으로는 코발트(전지 기술에 사용)와 유로피움(고효율 조명용의 형광 물질에 사용) 외 대상이 된 다른 모든 물질은 공급 부족이 발생할 것으로 전망되었다. 이를 종합하여 단기적으로는 디스프리슘, 유로피움, 인듐, 테르븀, 네오디움, 이트륨 등이, 중기적으로는 디스프리슘, 유로피움, 테르븀, 네오디움, 이트륨 등이 위기물질(Critical Material)로 분석되었다. 에너지성은 위기물질을 공급원다각화, 대체물질개발, 리유즈, 리사이클링 등을 국제적 파트너와 함께 추진하여 리스크를 관리할 것이며, 2011년까지 최신정보를 구축하여 위기물질 전략을 재설정할 예정이다. 체계적인 위기물질 선정 및 관리전략 등을 참조하고, 신재생에너지기술 변화에 따른 원재료의 중요성 및 리스크 관리현황을 기초로 우리나라에 적합한 위기관리 물질 선정 및 관리가 필요할 것이다.

  • PDF

Effect on Dams' Joint Operation in Geum River Basin using Water Management System (금강유역 물관리시스템의 연계운영 효과)

  • Ko, Ick-Hwan;Kim, Sheung-Kown;Kim, Jae-Hee;Kang, Shin-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1383-1387
    • /
    • 2008
  • 우리나라는 계절적으로 편중된 강우특성 때문에 이수관리와 치수관리가 분리될 수 없고, 하천유역 상 하류의 수량과 수질은 유기적으로 연관되어 있으므로 수자원관리는 하천유역단위로 통합적으로 이루어져야 한다. 특히 한정된 수자원으로 하천의 수량과 수질 목표를 동시에 달성하기 위해서는 물의 수요와 공급을 실시간 정보로 획득하면서 기상과 유출 분석기술을 활용하여 운영기간 동안의 용수수요와 공급을 예측하고, 이를 바탕으로 하천과 저수지의 수량과 수질을 고려한 유역 저수지군 시스템의 최적 물공급계획을 수립 시행할 수 있도록 지원하는 통합 물관리 Toolkit과 운영 기술이 필요하다. '유역통합 물관리시스템(IRWMS)'은 유역의 유출량 산정과 예측을 담당하는 유역유출 예측시스템(RRFS)과 연동하여 장 단기 저수지군 시스템의 최적운영 의사결정을 지원하기 위한 월단위 최적운영모형(SSDP), 일단위 최적운영모형(CoMOM), 그리고 유역물배분 모의운영모형(KModSim)이 포함되어 있다. RRFS로부터 예측된 수계내 소유역별 유입량 및 수요량(농업, 공업, 생활용수) 정보를 토대로, SSDP 또는 SSDP-CoMOM 연계모형으로부터 구한 월 또는 일 단위 최적저류량 및 방류량을 산정, 이를 KModSim 모형에 입력하여 장 단기 모의를 통하여 유역 물관리 의사결정의 최종단계에 해당하는 저수지군 최적방류량 결정에 필요한 정보 및 시나리오를 제공하게 된다. 본 연구에서는 개발된 저수지운영 요소모형들을 이용하여 금강수계 저수지군의 연계운영에 적용하였다.

  • PDF

Parameter Estimation and Validation of a Multinomial Logit Model for the Prediction of Mode Shift as a Result of TDM Schemes in Seoul (교통수요관리정책의 효과분석을 위한 다항로짓모형의 적용 - 서울시 사례 -)

  • 황기연;김익기;이우철
    • Journal of Korean Society of Transportation
    • /
    • v.16 no.4
    • /
    • pp.53-64
    • /
    • 1998
  • 본 연구의 목적은 '96년말 서울시에서 실시한 가구통행조사를 이용하여 서울시 수단선택모형을 구축하고 그 예측결과를 남산 혼잡통행료 전후저사자료와 비교하여 보다 구체적으로 그 정확성을 검증한 뒤 향후 서울시 교통수요관리 방안의 시행에 따른 수단선택변화 예측의 기본 모형으로 활용하는데 있다. 5가지의 대안모형의 분석결과 통행비용변수(승용차의 경유 주차요금포함)와 총통행시간변수(OVTT와 IVTT의 합), 승용차, 지하철, 택시상수로 구성된 모형이 최적모형으로 분석되었다. 이모형에 의한 시간가치는 9,395원, 승용차의 비용탄력성은-0.6767로서 기존 연구결과의 범위 내에 속한 것으로 나타났다. 최적모형을 이용하여 승용차통행비용이 증가한 경우를 모사분석결과 남산1,3호 터널 혼잡통행료 징수효과와 유사하게 승용차 분담율이 13% 가까이 감소한 것으로 나타나서 모형의 현실적합성도 비교적 높은 것으로 판명되었다. 향후 본 연구에서 선정된 최적수단선택모형을 통행배정모형과 결합하여 다양한 교통수요관리 방안에 따른 효과를 예측하는데 활용하면 서울과 같은 대도시의 단기적 교통관리의 수준을 한 단계 높이는데 기여할 것으로 판단된다.

  • PDF

Forecasting the Evolution of Demand for the Large Sized Television of Next Generation Using Conjoint and Diffusion Models (컨조인트와 확산모형을 이용한 차세대 대형 TV의 수요 예측)

  • 이종수;조영상;이정동;이철용
    • Proceedings of the Korea Technology Innovation Society Conference
    • /
    • 2003.11a
    • /
    • pp.87-100
    • /
    • 2003
  • 본 연구는 마케팅 분야에서 주로 사용되는 신제품확산모델(new product diffusion model)들이 기본적인 배스 모형(Bass model)에 기반하여 개별 소비자의 이질성(heterogeneity)을 반영하지 못하고, 제품이 시장에 출시되기 이전 단계에 시장수요를 예측하지 못하는 한계를 극복하기 위한 방법론을 제시하기 위해 진행되었다. 연구에 사용된 방법론을 살펴보면, 먼저 컨조인트(Conjoint) 분석을 통해 제품의 개별 속성들에 대한 소비자의 선호 구조를 파악하고, 이를 통해 추정된 정적(static)인 소비자 효용함수를 시장 및 기술 환경의 변화에 대한 적절한 예측자료와 결합하여 동적(dynamic)인 효용함수로 전환함으로써 시간에 따른 동적(dynamic) 시장 점유율(market share)을 예측하고, 그 결과를 신제품확산모델로부터 도출된 잠재시장(market potential) 추정치와 결합함으로써 신제품의 판매량을 예측한다. 또한 본 연구에서 제시하는 모델을 한국의 30인치 이상 대형TV 시장에 대해 실증적으로 분석하였으며, CRT TV, Projection TV, LCD TV, PDP TV에 대한 시장수요를 예측하였다. 분석 결과, 소비자들은 TV 선택시 화질과 가격에 민감한 반응을 보이는 것을 알 수 있으며, 이를 바탕으로 한 시장 예측 결과, 단기적으로는 가격 경쟁력이 있는 Projection TV가 높은 시장 점유율을 보이지만, 50인치 이상 LCD TV가 상용화될 경우, LCD TV가 다른 TV들보다 상대적으로 많은 판매량을 보일 것으로 예측되었다. 또한 TV 크기에 따른 소비자들의 선택을 살펴본 결과 50∼60인치대에 비해 40인치대 크기의 TV가 많이 판매될 것으로 예상된다.

  • PDF

Evaluation of short-term water demand forecasting using ensemble model (앙상블 모형을 이용한 단기 용수사용량 예측의 적용성 평가)

  • So, Byung-Jin;Kwon, Hyun-Han;Gu, Ja-Young;Na, Bong-Kil;Kim, Byung-Seop
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.4
    • /
    • pp.377-389
    • /
    • 2014
  • In recent years, Smart Water Grid (SWG) concept has globally emerged over the last decade and also gained significant recognition in South Korea. Especially, there has been growing interest in water demand forecast and this has led to various studies regarding energy saving and improvement of water supply reliability. In this regard, this study aims to develop a nonlinear ensemble model for hourly water demand forecasting which allow us to estimate uncertainties across different model classes. The concepts was demonstrated through application to observed from water plant (A) in the South Korea. Various statistics (e.g. the efficiency coefficient, the correlation coefficient, the root mean square error, and a maximum error rate) were evaluated to investigate model efficiency. The ensemble based model with an cross-validate prediction procedure showed better predictability for water demand forecasting at different temporal resolutions. In particular, the performance of the ensemble model on hourly water demand data showed promising results against other individual prediction schemes.

Survey on Demand Response Systems (신 수요관리시스템 적용 현황 분석 연구)

  • Yu, In-H.;Lee, Jin-K.;Kim, Sun-I.;Ko, Jong-M.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.664-666
    • /
    • 2003
  • 본 연구에서는 신 수요관리 기법인 DR(Demand Response) 시스템의 적용 현황을 분석하였다. 현재 전력사에서 사용하고 있는 9개의 프로그램에 대한 특성 및 적용 사례를 조사하고 분석하였다. 또한 DR 프로그램의 전형적인 실행과정을 살펴보고 DR의 효과적인 응용에 필요한 부분인 단기 부하예측의 필요와 이들의 방법에 대해서 조사하였다. 부하 예측을 위해서는 수요자의 부하 정보의 분석이 기반이 된다. 따라서 국내에 DR시스템을 도입할 경우에는 수요자의 부하 정보인 Load Profile에 대한 정보의 분석 시스템의 개발이 선행되어야 할 것으로 판단된다.

  • PDF

Short-term Load Forecasting by using a Temperature and Load Pattern (기온과 부하패턴을 이용한 단기수요예측)

  • Ku, Bon-Hui;Yoon, Kyoung-Ha;Cha, Jun-Min
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.590-591
    • /
    • 2011
  • This paper proposes a short-term load forecasting by using a temperature and load pattern. The forecasting model that represents the relations between load and temperature which get a numeral expected temperature based on the past temperature was constructed. Case studies were applied to load forecasting for 2009 data, and the results show its appropriate accuracy.

  • PDF

Development of Short-term Heat Demand Forecasting Model using Real-time Demand Information from Calorimeters (실시간 열량계 정보를 활용한 단기 열 수요 예측 모델 개발에 관한 연구)

  • Song, Sang Hwa;Shin, KwangSup;Lee, JaeHun;Jung, YunJae;Lee, JaeSeung;Yoon, SeokMann
    • The Journal of Bigdata
    • /
    • v.5 no.2
    • /
    • pp.17-27
    • /
    • 2020
  • District heating system supplies heat from low-cost high-efficiency heat production facilities to heat demand areas through a heat pipe network. For efficient heat supply system operation, it is important to accurately predict the heat demand within the region and optimize the heat production plan accordingly. In this study, a heat demand forecasting model is proposed considering real-time calorimeter information from local heat demands. Previous models considered ambient temperature and heat demand history data to predict future heat demands. To improve forecast accuracy, the proposed heat demand forecast model added big data from real-time calorimeters installed in the heat demands within the target region. By employing calorimeter information directly in the model, it is expected that the proposed forecast model is to reflect heat use pattern of each demand. Computational experiemtns based on the actual heat demand data shows that the forecast accuracy of the proposed model improved when the calorimeter big data is reflected.

Short-term Power Load Forecasting using Time Pattern for u-City Application (u-City응용에서의 시간 패턴을 이용한 단기 전력 부하 예측)

  • Park, Seong-Seung;Shon, Ho-Sun;Lee, Dong-Gyu;Ji, Eun-Mi;Kim, Hi-Seok;Ryu, Keun-Ho
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.2
    • /
    • pp.177-181
    • /
    • 2009
  • Developing u-Public facilities for application u-City is to combine both the state-of-the art of the construction and ubiquitous computing and must be flexibly comprised of the facilities for the basic service of the building such as air conditioning, heating, lighting and electric equipments to materialize a new format of spatial planning and the public facilities inside or outside. Accordingly, in this paper we suggested the time pattern system for predicting the most basic power system loads for the basic service. To application the tim e pattern we applied SOM algorithm and k-means method and then clustered the data each weekday and each time respectively. The performance evaluation results of suggestion system showed that the forecasting system better the ARIMA model than the exponential smoothing method. It has been assumed that the plan for power supply depending on demand and system operation could be performed efficiently by means of using such power load forecasting.

  • PDF