• Title/Summary/Keyword: 단기수요예측

Search Result 141, Processing Time 0.03 seconds

A Study on the Demand Forecasting by using Transfer Function with the Short Term Time Series and Analyzing the Effect of Marketing Policy (단기 시계열 제품의 전이함수를 이용한 수요예측과 마케팅 정책에 미치는 영향에 관한 연구)

  • Seo, Myeong-Yu;Rhee, Jong-Tae
    • IE interfaces
    • /
    • v.16 no.4
    • /
    • pp.400-410
    • /
    • 2003
  • Most of the demand forecasting which have been studied is about long-term time series over 15 years demand forecasting. In this paper, we set up the most optimal ARIMA model for the short-term time series demand forecasting and suggest demand forecasting system for short-term time series by appraising suitability and predictability. We are going to use the univariate ARIMA model in parallel with the bivariate transfer function model to improve the accuracy of forecasting. We also analyze the effect of advertisement cost, scale of branch stores, and number of clerk on the establishment of marketing policy by applying statistical methods. After then we are going to show you customer's needs, which are number of buying products. We have applied this method to forecast the annual sales of refrigerator in four branch stores of A company.

Representative Temperature Assessment for Improvement of Short-Term Load Forecasting Accuracy (단기 전력수요예측 정확도 개선을 위한 대표기온 산정방안)

  • Lim, Jong-Hun;Kim, Si-Yeon;Park, Jeong-Do;Song, Kyung-Bin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.6
    • /
    • pp.39-43
    • /
    • 2013
  • The current representative temperature selection method with five cities cannot reflect the sufficient regional climate characteristics. In this paper, the new representative temperature selection method is proposed with the consideration of eight representative cities. The proposed method considered the recent trend of power sales, the climate characteristics and population distribution to improve the accuracy of short-term load forecasting. Case study results for the accuracy of short-term load forecasting are compared for the traditional temperature weights of five cities and the proposed temperature weights of eight cities. The simulation results show that the proposed method provides more accurate results than the traditional method.

Short-term Peak Power Demand Forecasting using Model in Consideration of Weather Variable (기상변수를 고려한 모델에 의한 단기 최대전력수요예측)

  • Koh, H.S.;Lee, C.S.;Choy, J.K.;Kim, J.C.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.292-294
    • /
    • 2000
  • This paper is presented the method peak load forecast based on multiple regression Model. Forecasting model was composed with the temperature-humidity and the discomfort index. Also the week periodicity was excluded from weekday change coefficient of two types. Forecasting result was good with about 3[%]. And, utility of presented forecast model using statistical tests has been proved. Therefore, This results establish appropriateness and fitness of forecast models using peak power demand forecasting.

  • PDF

Short-term Peak Load Forecasting using Regression Models and Neural Networks (회귀모형과 신경회로망 모형을 이용한 단기 최대전력수요예측)

  • Koh, Hee-Seog;Ji, Bong-Ho;Lee, Hyun-Moo;Lee, Chung-Sik;Lee, Chul-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.295-297
    • /
    • 2000
  • In case of power demand forecasting the most important problem is to deal with the load of special-days, Accordingly, this paper presents a method that forecasting special-days load with regression models and neural networks. Special-days load in summer season was forecasted by the multiple regression models using weekday change ratio Neural networks models uses pattern conversion ratio, and orthogonal polynomial models was directly forecasted using past special-days load data. forecasting result obtains % forecast error of about $1{\sim}2[%]$. Therefore, it is possible to forecast long and short special-days load.

  • PDF

Short-term Water Demand Forecasting Algorithm Based on Kalman Filtering with Data Mining (데이터 마이닝과 칼만필터링에 기반한 단기 물 수요예측 알고리즘)

  • Choi, Gee-Seon;Shin, Gang-Wook;Lim, Sang-Heui;Chun, Myung-Geun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.10
    • /
    • pp.1056-1061
    • /
    • 2009
  • This paper proposes a short-term water demand forecasting algorithm based on kalman filtering with data mining for sustainable water supply and effective energy saving. The proposed algorithm utilizes a mining method of water supply data and a decision tree method with special days like Chuseok. And the parameters of MLAR (Multi Linear Auto Regression) model are estimated by Kalman filtering algorithm. Thus, we can achieve the practicality of the proposed forecasting algorithm through the good results applied to actual operation data.

The Development of Short-term Load Forecasting System Using Ordinary Database (범용 Database를 이용한 단기전력수요예측 시스템 개발)

  • Kim Byoung Su;Ha Seong Kwan;Song Kyung Bin;Park Jeong Do
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.683-685
    • /
    • 2004
  • This paper introduces a basic design for the short-term load forecasting system using a commercial data base. The proposed system uses a hybrid load forecasting method using fuzzy linear regression for forecasting of weekends and Monday and general exponential smoothing for forecasting of weekdays. The temperature sensitive is used to improve the accuracy of the load forecasting during the summer season. MS-SQL Sever has been used a commercial data base for the proposed system and the database is operated by ADO(ActiveX Data Objects) and RDO(Remote Data Object). Database has been constructed by altering the historical load data for the past 38 years. The weather iDormation is included in the database. The developed short-term load forecasting system is developed as a user friendly system based on GUI(Graphical User interface) using MFC(Microsoft Foundation Class). Test results show that the developed system efficiently performs short-term load forecasting.

  • PDF

Short-term demand forecasting method at both direction power exchange which uses a data mining (데이터 마이닝을 이용한 양방향 전력거래상의 단기수요예측기법)

  • Kim Hyoung Joong;Lee Jong Soo;Shin Myong Chul;Choi Sang Yeoul
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.722-724
    • /
    • 2004
  • Demand estimates in electric power systems have traditionally consisted of time-series analyses over long time periods. The resulting database consisted of huge amounts of data that were then analyzed to create the various coefficients used to forecast power demand. In this research, we take advantage of universally used analysis techniques analysis, but we also use easily available data-mining techniques to analyze patterns of days and special days(holidays, etc.). We then present a new method for estimating and forecasting power flow using decision tree analysis. And because analyzing the relationship between the estimate and power system ceiling Trices currently set by the Korea Power Exchange. We included power system ceiling prices in our estimate coefficients and estimate method.

  • PDF

Short-Term Load Forecasting for the Consecutive Holidays Considering Businesses' Operation Rates of Industries (산업체의 조업률을 반영한 연휴의 단기 전력수요예측)

  • Song, Kyung-Bin;Lim, Jong-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1657-1660
    • /
    • 2013
  • Short-term load forecasting for Chusok and New Year's consecutive holidays is very difficult, due to the irregular characteristics compared with ordinary weekdays and insufficient holidays historical data. During consecutive holidays of New Year and Chusok, most of industries reduce their operation rates and their electrical load levels. The correlation between businesses' operation rates and their loads during consecutive holidays of New Year and Chusok is analysed and short-term load forecasting algorithm for consecutive holidays considering businesses' operation rates of industries is proposed. Test results show that the proposed method improves the accuracy of short-term load forecasting over fuzzy linear regression method.

Short-term Electric Load Forecasting using temperature data in Summer Season (기온데이터를 이용한 하계 단기 전력수요예측)

  • Koo, Bon-gil;Lee, Heung-Seok;Lee, Sang-wook;Lee, Hwa-Seok;Park, Juneho
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.300-301
    • /
    • 2015
  • Accurate and robust load forecasting model plays very important role in power system operation. In case of short-term electric load forecasting, its results offer standard to decide a price of electricity and also can be used shaving peak. For this reason, various models have been developed to improve accuracy of load forecasting. This paper proposes a newly forecasting model for weather sensitive season including temperature and Cooling Degree Hour(C.D.H) data as an input. This Forecasting model consists of previous electric load and preprocessed temperature, constant, parameter. It optimizes load forecasting model to fit actual load by PSO and results are compared to Holt-Winters and Artificial Neural Network. Proposing method shows better performance than comparison groups.

  • PDF

Short-term Load Forecasting of Using Data refine for Temperature Characteristics at Jeju Island (온도특성에 대한 데이터 정제를 이용한 제주도의 단기 전력수요 예측)

  • Kim, Ki-Su;Song, Kyung-Bin
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.225-228
    • /
    • 2008
  • The electricity supply and demand to be stable to a system link increase of the variance power supply and operation are requested in jeju Island electricity system. A short-term Load forecasting which uses the characteristic of the Load is essential consequently. We use the interrelationship of the electricity Load and change of a summertime temperature and data refining in the paper. We presented a short-term Load forecasting algorithm of jeju Island and used the correlation coefficient to the criteria of the refining. We used each temperature area data to be refined and forecasted a short-term Load to an exponential smoothing method.

  • PDF