• Title/Summary/Keyword: 단구 퇴적환경변화

Search Result 16, Processing Time 0.026 seconds

A study on alluvial deposits of tributaries of Yungsan river, near Damyang. (담양지역 영산강 지류 하천 퇴적층의 특성에 대한 연구)

  • Kim, Jong Yeon;Hong, Se Sun
    • Journal of The Geomorphological Association of Korea
    • /
    • v.20 no.4
    • /
    • pp.51-70
    • /
    • 2013
  • The characteristics of deposits formed by the Daejon-cheon and Soobuk-cheon, dissecting the mountains such as Byungpung Mt. and Samin Mt. in western part of Damyang county, Jeonmam province. Results from field survey and bore hole logging by KIGAM are used in interpreting depositional environment, in this study. By the result of deposits near of the channels Daejon-cheon and Soobuk-cheon, and main channel of Youngsan River, the depth of sediment layers in this area is 4~7m, far thinner than formerly estimated. Weathered material of local rocks forms the base of the sedimentary layers. It can be assumed that the location channel of the Youngsan river has been stable ever since the start of the sedimentary events. Sediment particles of tributaries are angular than those of Youngsan River. Particles are larger and sorting is poor. It is interpreted as mount flash flood deposits. Main sources of sediments at the valley bottom or deposition dominated area are the terrace deposits or slope deposits over the gentle foot-slope or front of surrounding mountains. Some particles show polygonal cracking on the surface originated from the strong chemical weathering, while most of these has high angularity. It means various geomorphic processes operate to produce and transport the particles in this area.Isolated hills within the sedimentary plains are made with weathered materials of local bedrock. In the case of foot-slope of the hills, thin sedimentary layers are found. So it can be concluded that surface features of deposition zone of the Daejon-cheon and Soobuk-cheon is formed by the filling of lower part of the valley and its feature partly controlled by the relief of the weathering front.

Sedimentary Environmental Change and the Formation Age of the Damyang Wetland, Southwestern Korea (한국 남서부 담양습지의 퇴적환경 변화와 형성시기 연구)

  • Shin, Seungwon;Kim, Jin-Cheol;Yi, Sangheon;Lee, Jin-Young;Choi, Taejin;Kim, Jong-Sun;Roh, Yul;Huh, Min;Cho, Hyeongseong
    • Journal of the Korean earth science society
    • /
    • v.42 no.1
    • /
    • pp.39-54
    • /
    • 2021
  • Damyang Wetland, a riverine wetland, has been designated as the first wetland protection area in South Korea and is a candidate area for the Mudeungsan Area UNESCO Global Geopark. The Damyang Wetland area is the upstream part of the Yeongsan River and is now a relatively wide plain. To reconstruct the sedimentary environment around the Damyang Wetland, core samples were obtained, and sedimentary facies analysis, AMS and OSL age dataings, grain size, and geochemical analyses were carried out. In addition, comprehensive sedimentary environment changes were reconstructed using previous core data obtained from this wetland area. In the Yeongsan River upstream area, where the Damyang Wetland is located, fluvial terrace deposits formed during the late Pleistocene are distributed in an area relatively far from the river. As a gravel layer is widely distributed throughout the plains, Holocene sediments were likely deposited in a braided river environment when the sea level stabilized after the middle Holocene. Then, as the sedimentary environment changed from a braided river to a meandering river, the influx of sand-dominated sediments increased, and a floodplain environment was formed around the river. In addition, based on the pollen data, it is inferred that the climate was warm and humid around 6,000 years ago, with wetland deposits forming afterward. The the trench survey results of the river area around the Damyang Wetland show that a well-rounded gravel layer occurs in the lower part, covered by the sand layer. The Damyang Wetland was likely formed after the construction of Damyang Lake in the 1970s, as muddy sediments were deposited on the sand layer.

Burial Age and Flooding-origin Characteristics of Coastal Deposits at Gwangseungri, Gochanggun, Korea (고창군 광승리 연안 퇴적층의 퇴적 시기와 범람 기원 특성)

  • Kim, Jong Yeon;Yang, Dong Yoon;Shin, Won Jeong
    • Journal of the Korean earth science society
    • /
    • v.36 no.3
    • /
    • pp.222-235
    • /
    • 2015
  • Samples were collected from both places including the coastal area within the height of 5 m above the mean sea level (msl) (DH) and the top of the coastal terrace of 10-15 m msl (KS) high in Gwangseungri, Gochanggun, Korea. To find the origin of the deposit in the coastal area, granulometric analysis and geochemical analysis were performed. The result showed that the DH samples were originated from the reddish soils overlaying weathered bedrock which presented gradual change of chemical composition from the bottom toward the top. Clay minerals were found from the DH samples. These results concluded that the DH samples were found as in-situ weathered materials. The KS samples were originated from the soil layer covering gravel layer at the foot slope of the hill along the coast. The KS samples contained different chemical compositions from the DH. It is inferred that some of this layer was disturbed or experienced the influx of foreign material. The particle size of the KS samples was different from those found on the beach. The particle size of lower parts of KS site was finer than that on the beach, but the particle size of middle part of the site was coarser than that on the beach. The sorting of the KS site was poorer than that on the beach. Thus, it is inferred that some parts of the layer were formed by short-lived high energy event rather than sustained and continuous action of tidal currents and/or waves. Analysis using an optically stimulated luminescence (OSL) method showed that the burial age of samples from KS site were found 0.65-0.71 ka. Though the characteristics of the sediment layer and forming event in this area should be further studied, it can be inferred that this sedimentary layer formed by coastal flooding with storm.

The Coastal Geomorphology in General of Korea - Research Trends and Issues - (한국의 지형학 연구 - 해안지형 일반 -)

  • Kim, Sung Hwan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.1
    • /
    • pp.1-15
    • /
    • 2012
  • The purpose of this study is to review research trends and issues of coastal geomorphology in general of Korea, which is divided into two periods; the former and later periods of 1990s when The Korean Geomorphological Society was established. In this study, coastal geomorphology in general refers to the landforms except tidal flats and coastal terraces. The descriptive statistics of research papers published in 5 major geography journals since 1990s were computed and these papers were classified according to their main subjects. The methodology for coastal landform study was analyzed by sub-fields of landform change and sediment analysis. The study of coastal geomorphology in Korea started from around 1970s and has progressed significantly in terms of the scope and the number of papers published since 1990s. There is few paper published in 1990s on coastal geomorphology in general, but so many research has achieved and came to be the major part of coastal geomorphology study since 2000s. Further methodology is necessary for morphodynamics study in the future.

A Study on Detailed Bathymetry and Geophysical Characteristics of the Summit of the Dokdo Volcano (독도 화산체 정상부해역의 정밀해저지형 및 지구물리학적 특성 연구)

  • Kim, Chang Hwan;Park, Chan Hong;Lee, Myoung Hoon;Choi, Soon Young;Jou, Hyeong Tae
    • Economic and Environmental Geology
    • /
    • v.45 no.6
    • /
    • pp.685-695
    • /
    • 2012
  • We studied the detailed bathymetry and the geophysical characteristics of the summit of the Dokdo volcano using mutibeam echosounding and geophysical survey data. The bathymetry around the main east and west islets of the Dokdo volcano shows very shallow within about 10 m water depth. From near islets to about 30 m b.s.l., the shallow water area has very steep slope and many irregular sunken rocks. The area from about 30 m to about 80 m b.s.l. shows gentle rises and falls, and less steep slope. The area from 80 m b.s.l. has gradually flat undulation and smooth slope seabaed and is extended to offshore. The main islets of the Dokdo volcano and the rocky sea bottom elongated from the islets might be the residual part of the eroded and collapsed main crater of the Dokdo volcano. The bathymetry and the seafloor image(from backscattering) data show small craters, assumed to be formed by the eruption of later volcanism. The seafloor images propose that, except some areas with shallow sand sedimentary deposits, there are typical rocky bottom such as rocky protrusions and lack of sediments in the main morphology of the survey area. The stepped slopes of the seabed are deduced to be submarine terraces. The several prominent submarine terraces are found at the summit of the Dokdo volcano, suggesting repetition of sea level changes(transgressions and regressions) in the Quaternary. The results of the magnetic anomaly and the analytic signal have a good coherence with other geophysical consequences regarding to the location of the residual crater.

Reflectance and Microhardness Characteristics of Sulfide Minerals from the Sambong Copper Mine (삼봉동광산산(三峰銅鑛山産) 유화광물(硫化鑛物)의 반사도(反射度)와 미경도(微硬度) 특성(特性))

  • Chi, Se Jung
    • Economic and Environmental Geology
    • /
    • v.17 no.2
    • /
    • pp.115-139
    • /
    • 1984
  • The Cu-Pb-Zn-Ag hydrothermal vein-type deposits which comprise the Sambong mine occur within calc-alkaline volcanics of the Cretaceous Gyeongsang Basin. The ore mineralization took place through three distinct stages of quartz (I and II stages) and calcite veins (III stage) which fill the pre-existing fault breccia zones. These stages were separated in time by tectonic fracturing and brecciation events. The reflection variations of one mineral depending on mineralization sequence are considered to be resulted from variation in its chemical composition due to different physico-chemical conditions in the hydrothermal system. The reflection power of sphalerite increases with the content of Fe substituted for Zn. Reflectances of the sphalerite grain are lower on (111) than on (100) surface. The spectral profiles depend on the internal reflection color. Sphalerite, showing green, yellow and reddish brown internal reflection, have the highest reflection power at $544m{\mu}$ (green), $593m{\mu}$ (yellow) and $615m{\mu}$ (red) wavelength, respectively. Chalcopyrite is recognized as biaxial negative from the reflectivity data of randomly oriented grains measured at the most sensitivity at $544m{\mu}$. The microindentation hardness against the Fe content (wt. %) for the sphalerite increases to 8.05% Fe and then decreases toward 9.5% Fe content. Vickers hardness of the sphalerite is considerably higher on surface of (100) than on (111). The relationship between Vickers hardness and crystal orientation of the galena was determined to be $VHN_{(111)}$ > $VHN_{(210)}$ > $VHN_{(100)}$. The softer sulfides have the wider variation of the diagonal length in the indentation. Diagonal length in the indentation is pyrite

  • PDF