• Title/Summary/Keyword: 단괴

Search Result 76, Processing Time 0.022 seconds

Mineralogy of Graphitic Nodules Distributed in Black Shale in the Ogcheon Group (옥천층군 흑색셰일내에 분포하는 흑연질단괴에 대한 광물학적 연구)

  • 심재천;문희수;오재호
    • Journal of the Mineralogical Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.108-117
    • /
    • 1995
  • 옥천층군의 상부 이질암에 속하는 구룡산층내의 함흑연질셰일층준에서 흑연단괴가 산출된다. 이들 중 덕평과 조곡지역에서 산출되는 흑연질단괴는 두 지역 모두 장경 2cm 이하의 타원체가 주이며, 조곡지역의 단괴가 덕평지역의 단괴에 비하여 더욱 신장되어 있다. 덕평지역에서는 단괴가 초기 속성기간 중에 생성된 것임을 지시해 주는 조직이 단괴와 모암의 접촉부에서 관찰되는 반면 조곡지역에서는 이러한 조직이 관찰되지 않는다. 덕평지역 단괴의 주구성 광물은흑연, 인회석, 석영, 운모이고 조곡지역 단괴의 구성광물은 흑연, 석영, 운모이다. 덕평 및 조곡지역에서 산출되는 단괴내의 총탄소함량은 각각 40%, 5% 내외의 값을 갖는다. 덕평 및 조곡지역의 탄질물의 d002는 동인한 3.356~3.360$\AA$의 범위의 값을 가진다. 이는 고진화된 흑연의 저면간격에 해당되는 것으로, 두 지역의 변성상이 동일함을 의미한다.

  • PDF

Variations in Morphological and Geochemical Characteristics in Manganese Nodules from the East Siberian Arctic Shelf with Varying Water Depths (동시베리아해 대륙붕에서 산출되는 망가니즈단괴의 수심에 따른 형태학적·지화학적 특성 변화)

  • Hyo-Jin Koo;Hyen-Goo Cho;Sangmi Lee;Gi-Teak Lim;Hyo-Im Kim
    • Economic and Environmental Geology
    • /
    • v.56 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • In this study, we explore the morphological and geochemical characteristics for 440 manganese nodules collected from two different water depths [ARA12B-St52 (150 m, n = 239) and ARA12B-St58i (73 m, n = 201)] on the continental shelf of the East Siberian Sea from the ARA12B expedition in 2021. We also discussed the variations in the characteristics of manganese nodules with varying water depths in the Arctic Sea. The sizes of the nodules are generally greater than 3 cm at both sites. However, there is an obvious difference in the morphology with water depths. For the nodules collected at 150 m, brown-black colored tabular, tube, and ellipsoidal shapes with a rough surface texture are dominant. On the other hand, yellow-brown tabular shapes with a smooth surface texture are common for the nodules collected at 73 m. Furthermore, the slope of trend line between size and weight is significantly different at both sites: particularly, the slopes of nodules at 150 and 73 m are 1.60 and 0.84, respectively. This indicates the difference in the internal structure, porosity, and constituting elements between both nodules. Micro X-ray Flourescence (µ-XRF) results clearly demonstrate that the internal textures and chemical compositions are different with water depths. The nodules at 150 m are composed of a thick Mn-layer and a thin Fe-layer centered on the nucleus, while the nodules at 73 m are alternately grown with thin Mn- and Fe- layers around the nucleus. The average chemical compositions obtained by µ-XRF are 40.6 wt% Mn, 5.2 wt% Fe, and 7.9 Mn/Fe ratio at 150 m, and 10.3 wt% Mn, 19.0 wt% Fe, and 0.6 Mn/Fe ratio at 73 m. The chemical compositions of the nodules at 150 m are similar to those of nodules from the Peru Basin in the Pacific Ocean, while the compositions of the nodules at 73 m are similar to those of nodules from the Cook Islands or the Baltic Sea. The observed morphological and geochemical characteristics of the nodules show a clear difference at the two sites, which indicates that the aqueous conditions and formation processes of the nodules in the Arctic Sea vary with the water depths.

Raman Spectroscopic Study for Investigating the Spatial Distribution and Structural Characteristics of Mn-bearing Minerals in Non-spherical Ferromanganese Nodule from the Shallow Arctic Ocean (북극해 천해저 비구형 망가니즈단괴 내 광물종 분포 및 구조적 특성 규명을 위한 라만 분광분석 연구)

  • Sangmi, Lee;Hyo-Jin, Koo;Hyen-Goo, Cho; Hyo-Im, Kim
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.4
    • /
    • pp.409-421
    • /
    • 2022
  • Achieving a highly resolved spatial distribution of Mn-bearing minerals and elements in the natural ferromanganese nodules can provide detailed knowledge of the temporal variations of geochemical conditions affecting the formation processes of nodules. While a recent study utilizing Raman spectroscopy has reported the changes in the manganate mineral phases with growth for spherical nodules from the Arctic Sea, the distributions of minerals and elements in the nodules from the shallow Arctic Sea with non-spherical forms have not yet fully elucidated. Here, we reported the micro-laser Raman spectra with varying data acquisition points along three different profiles from the center to the outermost rim of the non-spherical ferromanganese nodules collected from the East Siberian Sea (~73 m). The elemental distributions in the nodule (such as Mn, Fe, etc.) were also investigated by energy dispersive X-ray spectroscopy (EDS) analysis to observe the internal structure and mineralogical details. Based on the microscopic observation, the internal structures of a non-spherical nodule can be divided into three different regions, which are sediment-rich core, iron-rich substrate, and Mn-Fe layers. The Raman results show that the Mn-bearing mineral phases vary with the data acquisition points in the Mn-Fe layer, suggesting the changes in the geochemical conditions during nodule formation. In addition, we also observe that the mineral composition and structural characteristics depend on the profile direction from the core to the rim. Particularly, the Raman spectra obtained along one profile show the lack of Fe-(oxy)hydroxides and the noticeably high crystallinity of Mn-bearing minerals such as birnessite and todorokite. On the other hand, the spectra obtained along the other two profiles present the presence of significant amount of amorphous or poorly-ordered Fe-bearing minerals and the low crystallinity of Mn-bearing minerals. These results suggest that the diagenetic conditions varied with the different growth directions. We also observed the presence of halite in several layers in the nodule, which can be evidence of the alteration of seawater after nodule formation. The current results can provide the opportunity to obtain detailed knowledge of the formation process and geochemical environments recorded in the natural non-spherical ferromanganese nodule.

Characteristics of Manganese Nodule from the East Siberian Sea (동시베리아해 망간단괴의 특성)

  • Koo, Hyo Jin;Cho, Hyen Goo;Yoo, Chan Min;Jin, Young Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.4
    • /
    • pp.219-227
    • /
    • 2017
  • Manganese (Mn) nodules in the Arctic Sea have been founded in the Kara Sea and Barents Sea, but mineral and chemical compositions have been rarely investigated. In this study, mineralogical and geochemical characteristics of Mn nodules obtained during the Arctic Expedition ARA07C in northern East Siberian Sea were identified, and then genesis of Mn nodules were estimated by using these characteristics. Main manganese oxide minerals constituting the manganese nodule were buserite, birnessite, and vernadite. The Mn nodules generally represent radiated and massive texture, and the layered texture was developed restrictively. The radiated texture, main feature of the manganese nodule in the East Siberian Sea, is mainly composed of cuspate-globular microstructure. Compared with the Mn nodules in Pacific and Indian Oceans, Mn nodules of the East Siberian Sea are abundant in Mn, but Fe is too scarce. There was no difference in the chemical composition and microstructures between outer and inner part of nodule. Therefore, nodules are most likely to have only one genesis during their growth, and all of nodules indicate the diagenetic in $Mn-Fe-(Cu+Ni+Co){\times}10$ ternary diagram. It is considered that the manganese nodules in the East Siberian Sea are characterized by high Mn contents because manganese contents in the Arctic Ocean were mainly resulted from river or coastal erosion and most of them are trapped in the Arctic Ocean.

Origin of Manganese Nodules and Their Distribution in the KODOS-89 Area, Northeastern Equatorial Pacific. (KODOS-89 지역 망간단괴의 성인과 분포)

  • 정회수;정갑식
    • 한국해양학회지
    • /
    • v.25 no.4
    • /
    • pp.189-204
    • /
    • 1990
  • In the KODOS (Korea Deep Ocean Study)-89 area, western part of clarion-Clipperton fracture zones in the northeastern equatorial Pacific, magnate nodules and sediments were sampled during the 'Farnella' cruise in Oct., 1989. Bulk chemical and mineralogical analyses have been made on a suit of ferromanganese nodules and sediments to study the origin and distribution pattern of the nodules. The nodules are classified into three groups based on their origin: diagenetic nodules with high Mn/Fe ratio, Cu, Ni, Zn, Mg, todorokite contents and rough surface texture; hydrogenetic nodules with high Fe, Co, vernadite contents and smooth surface texture; and transitional nodules with intermediate characters between diagenetic and hydrogenetic nodules. Study area is divided into four zones according to the origin and abundance of nodules: far north area where nodules are hydrogenetic and intermediate in abundance; north area where nodules are diagenetic and low in abundance; south area where nodules are diagenetic and intermediate in abundance; seamount area where nodules are hydrogenetic and high in abundance. distribution pattern of manganese nodules in the KODOS-89 area seems to be controlled by latitudinal variation of productivity in water column and sea bottom morphology.

  • PDF

Regional Variability of Manganese Nodule Facies in the KR1 Area in KODOS Area, Northeastern Equatorial Pacific (북동태평양 한국 KODOS 연구지역 중 KR1 지역 망간단괴의 지역적인 특성 변화)

  • Lee, Hyun-Bok;Kim, Wonnyon;Ko, Young-Tak;Kim, Jonguk;Chi, Sang-Bum;Park, Cheong-Kee
    • Economic and Environmental Geology
    • /
    • v.45 no.5
    • /
    • pp.477-486
    • /
    • 2012
  • High-resolution bathymetry and physico-chemical properties of manganese nodules were explored to identify the relationship between morphological features and nodule occurrences in the KR1, one of the Korean contract nodule fields located in the NE Pacific. The high-resolution seabed mapping showed that the southwestern sector of the KR1 (KR1-1) was relatively deeper than the northeastern sector (KR1-2) which is occupied by small-scale seamounts. In terms of nodule occurrence, manganese nodules in the KR1-1 were comparatively larger (2-4 cm) with rough surface (t-type) and discoidal shapes (D-type), while those in the KR1-2 were generally small (<2 cm) with smooth surface (s-type) and irregular shapes (I-type). In addition, the nodules in the KR1-1 had higher contents of Cu, Mn and Ni. Such connections of water depths to nodule appearances and metal contents are commonly observed in the Pacific nodule fields. On the other hand, the nodules in the KR1-2 tend to be controled by morphological features. The seamounts in the KR1-2 might continuously provide rock fragments as new nuclei of manganese nodules. As a result, the nodules could not grow over than 2 cm and showed the shapes of a newbie (i.e., smooth surface and irregular shapes). As a result, our observations indicate that occurrence features of manganese nodules could be subjected to water depths and seabed morphology simultaneously.

Mineralogy, Geochemistry, and Formation of Ferromanganese Nodules from the KONOD-1 Site, Northeastern Equatorial Pacific (북동(北東) 적도(赤道) 태평양(太平洋)(KONOD-1) 망간 단괴(団塊)의 은물조성(銀物組成), 화학분석(化學成分)과 성인(成因))

  • Kang, Jung-Keuk;Han, Sang-Joon
    • 한국해양학회지
    • /
    • v.23 no.3
    • /
    • pp.110-122
    • /
    • 1988
  • Between the Clarion and Clipperton fracture zones of the Northeastern Pacific, nodules and crusts were collected from abyssal plain and hills by the Korea Ocean Research and Development Institute in December, 1983 aboard the R/V KANA KEOKI of the Hawaii Institute of Geophysics. Mineralogical and geochemical data of bulk nodules are obtained and compared with analyses of other studies. Mechanisms of nodule formation are discussed based on these data. Generally, the nodules of the KONOD-1 site are composed of todorokite and ${\delta}-MnO_2$. The contents of Mn, Fe, Ni, and Cu of the bulk nodules are variable and the average contents of metals are slightly lower (Mn, 21.40%; Ni, 0.9%; Cu, 0.8%) than those of nodules from other abyssal plains between the Clarion and Clipperton fracture zones. High Mn/Fe (average 3.9; maximum 5.9) and Cu/Ni (average 0.8; maximum 1.0) ratios are similar to the nodules that were formed diagenetically in the northeast Pacific. The chemical characteristics of the KONOD-1 nodules reflect their sedimentary environments; nodules with higher diagenetic signatures occur in areas of thin Quaternary siliceous ooze, and nodules of lower diagenetic influence occur in topographically irregular abyssal hill areas.

  • PDF

Characteristics and Formation conditions of the Rhodoliths in Wu Island beach, Jeju-do, Korea: Preliminary Report (제주도 우도의 홍조단괴 해빈 퇴적물의 특징과 형성조건 : 예비연구 결과)

  • 김진경;우경식;강순석
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.4
    • /
    • pp.401-410
    • /
    • 2003
  • Three beaches of the Seogwang-ri coast in the western part of Wu Island, Jeju-do, are solely composed of rhodoliths (red algal nodules). The beach sediments are coarse sand to granule in size and they show the banded distribution according to size. Commonly the larger pebble-sized rhodoliths are concentrated near the rocky coast, resulting from the transportation of the nodules from shallow marine environments by intermittent typhoons. Based on the internal texture of the rhodoliths, it appears that crustose red algae, Lithophyllum sp., is the main contributor for the formation of the rhodolith. The coarse sand to granule-sized grains show that they started to grow from the nucleus as rhodoliths, but the surface was severely eroded by waves. However, the pebble to cobble-sized grains exhibit the complete growth pattern of rhodoliths and sometimes contain other calcareous skeletons. It is common that encrusting red algae are intergrown with encrusting bryozoan. The surface morphology of rhodolith tends to change from the concentric to domal shape towards the outer part. This suggests that the rhodolith grew to a certain stage by rolling, but it grew in more quiet condition without rolling as it became larger. Aragonite and calcite cements can be found in the pores within rhodoliths (conceptacle, intraskeletal pore in bryozoan, and boring), and this means that shallow marine cementation has occurred during their growth. Growth of numerous rhodoliths in shallow marine environment near the Seogwang-ri coast indicates that this area has suitable oceanographic conditions for their growth such as warm water temperature (about 19$^{\circ}C$ in average) and clear water condition due to the lack of terrestrial input of volcanoclastic sediments. Fast tidal current and high wave energy in the shallow water setting can provide suitable conditions enough for their rolling and growth. Typhoons passing this area every summer also influence on the growth of rhodoliths.

Characteristics of Non-Spherical Manganese Nodule from the East Siberian Sea (동시베리아해 비구형 망가니즈단괴의 특성)

  • Koo, HyoJin;Park, MuSeong;Seo, ChoongMan;Cho, HyenGoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.4
    • /
    • pp.241-253
    • /
    • 2021
  • Manganese nodules have been found in the shallow water depth of the Arctic Ocean as well as in the abyssal plains of the Pacific and Indian Oceans, but detailed study for them were rarely investigated. Manganese nodules, collected from the East Siberian Sea through the Arctic Expedition using Araon ice braking vessel, have a high potential for Mn mineral resources because they have high Mn content with high Mn/Fe ratio. This study investigated the external form, size and weight, internal texture for the non-spherical manganese nodule, which has about 7 % of total nodule from the East Siberian Sea. This study also researched the relative Mn-oxide mineral composition using the peak area ratio of X-ray diffraction pattern and their chemical composition. All data obtained from non-spherical nodules were compared with the spherical ones. Ellipsoidal, platy and irregular types are common among 5 groups of non-spherical manganese nodule based on the external form, and major axis and weight have positive relationship. All non-spherical manganese nodules have core mainly composed of mud sediments. The average Mn oxide mineral contents in nodules are birnessite, buserite and todorokite in descending order. Although mineral composition does not show any correlation with the external form, kind of core or internal structure, todorokite and buserite contents tend to increase and birnessite content decrease from the surface to the core in the nodule. Non-spherical manganese nodules have higher Mn content and Mn/Fe ratio than those from the shallow water depth of the Arctic Sea and even in the deep-sea of the Pacific and Indian Ocean. Although non-spherical nodule is larger and heavier, and has lower Mn content and Mn/Fe ratio than spherical nodule, there are not any differences in mineral composition and internal structure between them. Almost all manganese nodules collected from the East Siberian Sea are attributed to diagenetic process, because they are higher than 5 in Mn/Fe ratio.

A Preliminary X-ray Photoelectron Spectroscopic Study on the Manganese Oxidation State of in Polymetallic Nodules of the East Siberian Sea (동시베리아해 망가니즈 단괴의 망가니즈 산화상태 변화 규명을 위한 X선 광전자 분광분석 예비연구)

  • Hyo-Im Kim;Sangmi Lee;Hyo-Jin Koo;Yoon Ji;Hyen-Goo Cho
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.303-312
    • /
    • 2023
  • The determination of the oxidation states of metal elements in manganese nodules sheds light on the understanding of the formation mechanism of nodules, providing insights into the paleo-environmental conditions such as the redox potential of the aqueous system. This study aims to reveal the oxidation states and chemical bonding of manganese in the natural polymetallic nodules, utilizing conventional X-ray photoelectron spectroscopy (XPS). Specifically, shallow manganese nodules from the Siberian Arctic Sea, effectively recording mineralogical variations, were used in this study. Detailed analysis of XPS Mn 2p spectra showed changes in the manganese oxidation state from the center to the outer parts of the nodules. The central part of the nodules showed a higher Mn4+ content, approximately 67.9%, while the outermost part showed about 63% of Mn4+ due to an increase in the Mn3++Mn2+. The decrease in the Mn oxidation state with the growth is consistent with the previously reported mineralogical variations from todorokite to birnessite with growth. Additionally, the O 1s spectra presented a predominance of Mn-O-H bonds in the outer layers compared to the center, suggesting hydration by water in the layered manganates of outer layers. The results of this study demonstrate that XPS can be directly applied to understand changes in paleo-environmental conditions such as the redox states during the growth of manganese nodules. Finally, future studies using high-resolution synchrotron-based XPS experiments could achieve details in oxidation states of manganese and trace metal elements.