• Title/Summary/Keyword: 단계추출

Search Result 2,681, Processing Time 0.032 seconds

Detecting Tables in HTML Documents (HTML 문서의 테이블 식별)

  • 김연석;이경호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.163-165
    • /
    • 2004
  • HTML의 <TABLE> 태그는 연관된 정보를 기술하기 위한 테이블은 물론이고 웹 문서의 레이아웃을 표현하기 위하여 사용된다 본 논문에서는 웹으로부터 유용한 정보를 추출하기 위한 목적의 일환으로 HTML 문서로부터 테이블을 식별하는 효율적인 방법을 제안한다. 제안된 방법은 전처리와 속성-값 연관관계에 추출의 두 단계로 구성된다. 전처리 단계에서는 진짜 테이블 또는 레이아웃용으로 사용된 <TABLE> 태그의 일반적인 특징을 반영한 규칙을 적용하여 진짜 또는 가짜로 명확히 식별이 가능한 <TABLE> 태그를 추출한다. 속성-값 연관관계 추출 단계에서는 테이블 영역을 속성 및 값 영역으로 구분한 후. 값 영역에 대하여 구문적 일관성 검사를 수행한다 또한 값 영역의 크기가 작아서 구문적 일관성 검사를 수행할 수 없는 경우, 속성-칸 영역의 의미적 일관성을 검사한다. 제안된 방법의 성능을 명가하기 위하여 1,393개의 HTML 문서로부터 추출한 11,477개의 <TABLE> 태그를 대상으로 실험한 결과. 평균적으로 97.54%의 정확률과 99.22%의 재현률을 보여 기존 연구보다 우수하였다.

  • PDF

Adaptive face Region Extraction Based on Skin Color Information and Projection (피부색 정보와 투영 기법에 기반한 적응적 얼굴 영역 추출)

  • Lim Ju-Hyuk;Bae Sung-Ho;Song Kun-Woen
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.5
    • /
    • pp.633-640
    • /
    • 2005
  • In this paper, we propose an adaptive face region extraction algorithm based on skin color information. It consists oi the extraction of face candidate region and projection step. In the step of face candidate region extraction, we extract the pixels which are regarded as the candidate skin color pixels by using the given range. Then, the ratio between the total pixels and the extracted pixels is calculated. According to the ratio, we adaptively decide the range of the skin color and extract face candidate region. In the projection step, we project the extracted face candidate region into vertical direction to estimate the width of the face. Then the redundant parts are efficiently removed by using the estimated face width. And the extracted face width information is used at the horizontal projection step to extract the height of the face. From the experiment results for the various images, the proposed algorithm shows more accurate results than the conventional algorithm.

  • PDF

Event Sentence Extraction for Online Trend Analysis (온라인 동향 분석을 위한 이벤트 문장 추출 방안)

  • Yun, Bo-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.9
    • /
    • pp.9-15
    • /
    • 2012
  • A conventional event sentence extraction research doesn't learn the 3W features in the learning step and applies the rule on whether the 3W feature exists in the extraction step. This paper presents a sentence weight based event sentence extraction method that calculates the weight of the 3W features in the learning step and applies the weight of the 3W features in the extraction step. In the experimental result, we show that top 30% features by the $TF{\times}IDF$ weighting method is good in the feature filtering. In the real estate domain of the public issue, the performance of sentence weight based event sentence extraction method is improved by who and when of 3W features. Moreover, In the real estate domain of the public issue, the sentence weight based event sentence extraction method is better than the other machine learning based extraction method.

Data Classification of Visual Quality for Image Recognition (영상인식을 위한 화질의 데이터 분류성)

  • Cho, Jae-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.279-280
    • /
    • 2021
  • 패턴 또는 영상을 인식하기 위하여 먼저 기계 학습 모델을 선택하고, 선택된 모델은 여러 단계의 처리 단계 과정으로써, 학습 데이터 구성과 특징 추출 그리고 분류기 등으로 크게 나눌 수 있다. 기존의 학습 모델의 처리 단계 중 학습 데이터 구성은 첫 번째 중요한 단계이다. 본 논문에서는 학습 데이터들의 특징을 분석하여 데이터 분류성의 척도로 사용될 수 있는지를 검토하여 차후 기계 학습 및 딥 러닝의 인식을 높이고자 한다.

  • PDF

Automatic Extraction of 3-Dimensional Road Information Using Road Pavement Markings (도로 노면표지를 이용한 3차원 도로정보 자동추출)

  • Kim, Jin-Gon;Han, Dong-Yeub;Yu, Ki-Yun;Kim, Yong-Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.4 s.31
    • /
    • pp.61-68
    • /
    • 2004
  • In this paper, we suggest an automatic technique to obtain 3-D road information in complex urban areas using road pavement markings. This method is composed of following three main steps. The first step is extracting the pavement markings from aerial images, the second one is matching the same pavement markings in two aerial images, and the last one is obtaining the 3-D coordinates of those using EOP(exterior orientation parameters) of aerial images. Here, we focus on the first and second step because the last step can be performed by using the well hewn collinearity condition equation. We used geometric properties and spatial relationships of the pavement markings to extract the lane line markings on the images and extracted arrow lane markings additionally using template matching. And then, we obtained 3-D coordinates of the road using relational matching for the pavement markings. In order to evaluate the accuracy of extraction, we did a visual inspection and compared the result of this technique with those measured by digital photogrammetric system.

  • PDF

Reconstruction from Feature Points of Face through Fuzzy C-Means Clustering Algorithm with Gabor Wavelets (FCM 군집화 알고리즘에 의한 얼굴의 특징점에서 Gabor 웨이브렛을 이용한 복원)

  • 신영숙;이수용;이일병;정찬섭
    • Korean Journal of Cognitive Science
    • /
    • v.11 no.2
    • /
    • pp.53-58
    • /
    • 2000
  • This paper reconstructs local region of a facial expression image from extracted feature points of facial expression image using FCM(Fuzzy C-Meang) clustering algorithm with Gabor wavelets. The feature extraction in a face is two steps. In the first step, we accomplish the edge extraction of main components of face using average value of 2-D Gabor wavelets coefficient histogram of image and in the next step, extract final feature points from the extracted edge information using FCM clustering algorithm. This study presents that the principal components of facial expression images can be reconstructed with only a few feature points extracted from FCM clustering algorithm. It can also be applied to objects recognition as well as facial expressions recognition.

  • PDF

The 3-step Answer Processing Method for Encyclopedia Question-Answering System : AnyQuestion1.0 (3단계 정답 추출 방법을 이용한 백과사전 인물분야)

  • Kim, Hyeon-Jin;Oh, Hyo-Jung;Wang, Ji-Hyun;Lee, Chung-Hee;Jang, Myung-Gil
    • Annual Conference on Human and Language Technology
    • /
    • 2004.10d
    • /
    • pp.275-282
    • /
    • 2004
  • 본 논문은 3단계 정답 추출 방법을 통해 백과사전 인물분야 질의응답 시스템을 구현하는 방법을 제안한다. 논문에서 제안한 3단계 정답 추출 방법은 1) 백과사전 문서 내에서 정형화 될 수 있는 지식들을 추출한 백과사전 KB 기반 정답 추출 방법, 2) 문장을 언어분석 하여 LF(Logical Form)구조를 추출하여 색인한 LF 기반 정답추출 방법, 3) 각 문장을 주제 태깅을 하여, 주제별로 묶어 의미적 단락으로 구분하고 단락 검색을 기반으로 정답을 추정하는 의미적 단락 기반 정답 추출 방법으로 구성되어 있다. 이러한 방법론은 백과사전이라는 문서 도메인의 특성을 반영하고. 사용자 질문의 난이도 또는 형태에 따라서 정답을 제공할 수 있는 백과사전 인물분야 질의응답 시스템에 적합하다.

  • PDF

Vehicle License Plate Extraction using Multi-level Image Processing Methods (다단계 영상처리 기법을 이용한 차량번호판 추출방법)

  • Ahn, Woon-Ki;Chang, Jae-Khun
    • Annual Conference of KIPS
    • /
    • 2003.11a
    • /
    • pp.275-278
    • /
    • 2003
  • 자동차 번호판 인식 시스템은 영상획득, 번호판추출, 전처리(이진화), 문자영역 분할, 문자인식 등의 5가지 핵심 부분으로 구성된다. 따라서 자동차 번호판 인식 시스템의 최종 인식율은 각 단계의 성능에 따라 직접적인 영향을 받는다. 본 논문은 영상처리 기법을 이용하여 영상에서 번호판 영역을 추출을 위한 연구로 문자인식 단계에서 높은 인식율을 확보할 수 있도록 빠른 연산속도와 추출 정확성을 높일 수 있는 알고리즘을 제안한다.

  • PDF

Performance Analysis of Automatic Target Extraction Algorithms by using SAR Images (SAR 영상을 이용한 자동표적추출 알고리즘의 성능 분석)

  • Hur, Dong-Seok;KIm, Tae-Jung
    • Proceedings of the KSRS Conference
    • /
    • 2007.03a
    • /
    • pp.61-64
    • /
    • 2007
  • SAR 영상에 존재하는 군사표적은 광학 영상에 있는 군사표적에 비하여 쉽게 구별하기 힘들다. 이는 전체 영상에서 군사표적을 구성하는 픽셀의 수가 매우 적기 때문이다. 이러한 문제 때문에 SAR 영상 분석가들은 영상을 분석하는 것이 어렵다. 이 문제를 해결하기 위해서는 자동화된 분석 시스템이 필요하다. 본 논문에서는 기존에 연구된 SAR 영상을 이용한 자동표적추출 시스템을 분석하고 구현하였다. 구현된 자동표적추출 시스템을 MSTAR 데이터 셋을 이용하여 실험하여 결과를 도출하고, 그 결과를 분석하여 자동표적추출 시스템 각 단계의 성능을 분석하였다. 분석 결과 각 단계별로 최적의 성능을 보여주는 임계값을 알아낼 수 있었다.

  • PDF

An Efficient Extraction of An Integrated XML Schema (통합 XML 스키마의 효율적인 추출)

  • Rhim Taewoo;Kang Haeran;Lee Kyong-Ho
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.43-45
    • /
    • 2005
  • XML 스키마의 수가 급증함에 따라 동일한 도메인에 속하는 유사한 스키마를 통합하는 방법에 대한 관심이 증가하고 있다. 일반적으로 XML 스키마 통합 과정은 스키마 클러스터링과 통합 스키마 추출의 두 단계로 구성된다. 본 논문에서는 통합 스키마의 추출을 위한 효율적인 방법을 제안한다. 제안된 방법은 공통 구조 추출, 스키마 통합, 그리고 최적화의 세 단계로 이루어진다. 실험결과, 제안된 방법은 처리시간 및 정확도 측면에서 우수란 결과를 보였다.

  • PDF