• Title/Summary/Keyword: 단계적 선량평가

Search Result 51, Processing Time 0.031 seconds

Feasibility Study of Isodose Structure Based Field-in-Field Technique for Total Body Irradiation (전신조사방사선치료 시 Isodose Structure를 이용한 Field-in-Field Technique의 유용성 평가)

  • Lee, Yoon Hee;Ban, Tae Joon;Lee, Woo Seok;Kang, Tae Young;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.1
    • /
    • pp.15-24
    • /
    • 2013
  • Purpose: In Asan Medical Center, Two parallel opposite beams are employed for total body irradiation. Patients are required to be in supine position where two arms are attached to mid axillary line. Normally, physical compensators are required to compensate the large dose difference for different parts of body due to the different thicknesses compared to the umbilicus separation. There was the maximum dose difference up to 30% in lung and chest wall compared to the prescription dose. In order to resolve the dose discrepancy occurring on different body regions, the feasibility of using Fieid-in-Field Technique is investigated in this study. Materials and Methods: CT scan was performed to The RANDO Phantom with fabricated two arms and sent to Eclipse treatment planning system (version 10.0, Varian, USA). Conventional plan with physical lead compensator and new plan using Field-in-Field Technique were established on TPS. AAA (Anisotropic Analytical Algorithm) dose calculation algorithm was employed for two parallel opposite beams attenuation. Results: The dose difference between two methods was compared with the prescription dose. The dose distribution of chest and anterior chest wall uncovered by patient arms was 114~124% for physical lead compensator while Field-in-Field Technique gave 106~107% of the dose distribution. In-vivo dosimetry result using TLD showed that the dose distribution to the same region was 110~117% for conventional physical compensator and 104~107% for Field-in-Field Technique. Conclusion: In this study, the feasibility of using FIF technique has been investigated with fabricated arms attached Rando phantom. The dose difference was up to 17% due to the attached arms. It is shown that the dose homogeneity is within ${\pm}10%$ with the CT based 3-dimensional 4 step FIF technique. The in-vivo dosimetry result using TLD was showed that 95~107% dose distribution compared to prescription dose. It is considered that CT based 3-dimensional Field-in-Field Technique for the total body irradiation gives much homogeneous dose distribution for different body parts than the conventional physical compensator method and might be useful to evaluate the dose on each part of patient body.

  • PDF

Radiation Dose Reduction in Digital Mammography by Deep-Learning Algorithm Image Reconstruction: A Preliminary Study (딥러닝 알고리즘을 이용한 저선량 디지털 유방 촬영 영상의 복원: 예비 연구)

  • Su Min Ha;Hak Hee Kim;Eunhee Kang;Bo Kyoung Seo;Nami Choi;Tae Hee Kim;You Jin Ku;Jong Chul Ye
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.2
    • /
    • pp.344-359
    • /
    • 2022
  • Purpose To develop a denoising convolutional neural network-based image processing technique and investigate its efficacy in diagnosing breast cancer using low-dose mammography imaging. Materials and Methods A total of 6 breast radiologists were included in this prospective study. All radiologists independently evaluated low-dose images for lesion detection and rated them for diagnostic quality using a qualitative scale. After application of the denoising network, the same radiologists evaluated lesion detectability and image quality. For clinical application, a consensus on lesion type and localization on preoperative mammographic examinations of breast cancer patients was reached after discussion. Thereafter, coded low-dose, reconstructed full-dose, and full-dose images were presented and assessed in a random order. Results Lesions on 40% reconstructed full-dose images were better perceived when compared with low-dose images of mastectomy specimens as a reference. In clinical application, as compared to 40% reconstructed images, higher values were given on full-dose images for resolution (p < 0.001); diagnostic quality for calcifications (p < 0.001); and for masses, asymmetry, or architectural distortion (p = 0.037). The 40% reconstructed images showed comparable values to 100% full-dose images for overall quality (p = 0.547), lesion visibility (p = 0.120), and contrast (p = 0.083), without significant differences. Conclusion Effective denoising and image reconstruction processing techniques can enable breast cancer diagnosis with substantial radiation dose reduction.

The Research Relating to QA of the Absorbed Dose in the 10 MeV E-beam Facility in Accordance with the International Standards (국제표준에 따른 10 MeV급 전자빔 조사시설의 흡수선량 품질보증에 관한 연구)

  • Ha, Tae-Sung;Ahn, Cheol;Jung, Pyeong-Hwan;Cho, Jeong-Hee;Lee, Jong-Seok;Lee, Hye-Nam;Yoo, Beong-Gyu
    • Journal of radiological science and technology
    • /
    • v.33 no.4
    • /
    • pp.387-394
    • /
    • 2010
  • In the field of healthcare, the conventional sterilization treatments have been replaced by irradiation methods which are in accordance with internationally well established quality standards. The quality control in radiation sterilization assures that the absorbed dose of the irradiated material is in agreement with its requirements and standards. The electron beam irradiation requires technical assessments of more process parameters than gamma irradiation does. Korea has witnessed wide uses of electron accelerators since early 2000 but there hasn't been research experiences relating to quality system in accordance with international standards. The new large scale e-beam irradiation system with the specification of 10 MeV, 8 kW was installed and operated in 2008 by Seoul Radiology Services Co. It consists of the electron accelerator, product handling system, safety, documentation and control subsystems into an integrated system to meet the requirement of the Good Manufacturing Practice such as process quality assurance and management of product tracking records. To implement the international standard such as EN ISO11137, it is necessary to understand the purposes aimed in the standard and carry out the tests following the procedures required. This study presented the specification of the e-beam facility and showed what its design requirements and features are. The test results on a variety of process parameters were presented and validated it they are within the required limits.

MU Fluence Reconstruction based-on Delivered Leaf Position: for IMRT Quality Assurance (세기조절방사선치료의 정도관리를 위한 모니터유닛 공간분포 재구성의 효용성 평가)

  • Park, So-Yeon;Park, Yang-Kyun;Park, Jong-Min;Choi, Chang-Heon;Ye, Sung-Joon
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.1
    • /
    • pp.28-34
    • /
    • 2011
  • The measurement-based verification for intensity modulated radiation therapy (IMRT) is a time-and labor-consuming procedure. Instead, this study aims to develop a MU fluence reconstruction method for IMRT QA. Total actual fluences from treatment planning system (TPS, Eclipse 8.6, Varian) were selected as a reference. Delivered leaf positions according to MU were extracted by the dynalog file generated after IMRT delivery. An in-house software was develop to reconstruct MU fluence from the acquired delivered leaf position data using MATLAB. We investigated five patient's plans delivered by both step-and-shoot IMRT and sliding window technologies. The total actual fluence was compared with the MU fluence reconstructed by using commercial software (Verisoft 3.1, PTW) and gamma analysis method (criteria: 3%/3 mm and 2%/1 mm). Gamma pass rates were $97.8{\pm}1.33$% and the reconstructed fluence was shown good agreement with RTP-based actual fluence. The fluence from step and shoot IMRT was shown slightly higher agreement with the actual fluence than that from sliding window IMRT. If moving from IMRT QA measurements toward independent computer calculations, the developed method can be used for IMRT QA. A point dose calculation method from reconstructed fluences is under development for the routine IMRT QA purpose.

Error Analysis of Delivered Dose Reconstruction Using Cone-beam CT and MLC Log Data (콘빔 CT 및 MLC 로그데이터를 이용한 전달 선량 재구성 시 오차 분석)

  • Cheong, Kwang-Ho;Park, So-Ah;Kang, Sei-Kwon;Hwang, Tae-Jin;Lee, Me-Yeon;Kim, Kyoung-Joo;Bae, Hoon-Sik;Oh, Do-Hoon
    • Progress in Medical Physics
    • /
    • v.21 no.4
    • /
    • pp.332-339
    • /
    • 2010
  • We aimed to setup an adaptive radiation therapy platform using cone-beam CT (CBCT) and multileaf collimator (MLC) log data and also intended to analyze a trend of dose calculation errors during the procedure based on a phantom study. We took CT and CBCT images of Catphan-600 (The Phantom Laboratory, USA) phantom, and made a simple step-and-shoot intensity-modulated radiation therapy (IMRT) plan based on the CT. Original plan doses were recalculated based on the CT ($CT_{plan}$) and the CBCT ($CBCT_{plan}$). Delivered monitor unit weights and leaves-positions during beam delivery for each MLC segment were extracted from the MLC log data then we reconstructed delivered doses based on the CT ($CT_{recon}$) and CBCT ($CBCT_{recon}$) respectively using the extracted information. Dose calculation errors were evaluated by two-dimensional dose discrepancies ($CT_{plan}$ was the benchmark), gamma index and dose-volume histograms (DVHs). From the dose differences and DVHs, it was estimated that the delivered dose was slightly greater than the planned dose; however, it was insignificant. Gamma index result showed that dose calculation error on CBCT using planned or reconstructed data were relatively greater than CT based calculation. In addition, there were significant discrepancies on the edge of each beam while those were less than errors due to inconsistency of CT and CBCT. $CBCT_{recon}$ showed coupled effects of above two kinds of errors; however, total error was decreased even though overall uncertainty for the evaluation of delivered dose on the CBCT was increased. Therefore, it is necessary to evaluate dose calculation errors separately as a setup error, dose calculation error due to CBCT image quality and reconstructed dose error which is actually what we want to know.

Effectiveness Evaluation of the Tube Voltage Measurement by using Additional Filter (부가필터를 이용한 kVp 측정의 실효성 평가)

  • Hwang, Jun-Ho;Lee, Kyung-Ho;Choi, Yoon-Bong;Kang, Byung-Sam
    • Journal of radiological science and technology
    • /
    • v.38 no.4
    • /
    • pp.355-363
    • /
    • 2015
  • Advancement in the medical field provides an opportunity for the development of medical equipment and also enable accurate diagnosis for the inspection and the treatment of diseases. The aging of equipment due to the frequent operation produce uncertainty in the patient exposure dose, so a quality control was implemented by establishing a safety management system on a regular basis. The x-ray tube voltage (kVp), which is directly involved in the patient exposure dose and the life of the equipment, needs periodic performance for the quality control, but it has a limitation due to the time and the cost. In this study, we proposed a new method for measuring the kVp with ease by using the Y and Cu to solve the problem of the time and cost. We also evaluated the usefulness and the effectiveness of the new method and its accuracy through the kVp measurement. After securing the condition, the amount of the tube current and evaluating the usefulness and effectiveness of kVp measured using Y and Cu. The density range used was at 0.5-1.0, kVp was in the range of ${\pm}10%$, then, we recorded the change in concentration as % of Y and Cu. This experiment showed that when Cu and Y was at 75 kVp, concentration was the same, and when the kVp was changed to 65 ~ 85 %, a gradual increase in concentration to 85 ~ 110 % was noted.

Evaluation of Photoneutron Dose for Prostate Cancer Radiation Therapy by Using Optically Stimulated Luminescence Dosimeter (OSLD) (전립선암 방사선치료 시 광자극발광선량계를 이용한 광중성자선량 평가)

  • Lee, Joo-Ah;Back, Geum-Mun;Kim, Yeon-Soo;Son, Soon-Yong;Choi, Kwan-Woo;Yoo, Beong-Gyu;Jeong, Hoi-Woun;Jung, Jae-Hong;Kim, Ki-Won;Min, Jung-Whan
    • Journal of radiological science and technology
    • /
    • v.37 no.2
    • /
    • pp.125-134
    • /
    • 2014
  • This study is to provide basic information regarding photoneutron doses in terms of radiation treatment techniques and the number of portals in intensity-modulated radiation therapy (IMRT) by measuring the photoneutron doses. Subjects of experiment were 10 patients who were diagnosed with prostate cancer and have received radiation treatment for 5 months from September 2013 to January 2014 in the department of radiation oncology in S hospital located in Seoul. Thus, radiation treatment plans were created for 3-Dimensional Conformal Radiotherapy (3D-CRT), Volumetric-Modulated Arc Radiotherapy (VMAT), IMRT 5, 7, and 9 portals. The average difference of photoneutron dose was compared through descriptive statistics and variance analysis, and analyzed influence factors through correlation analysis and regression analysis. In summarized results, 3D-CRT showed the lowest average photoneutron dose, while IMRT caused the highest dose with statistically significance (p <.01). The photoneutron dose by number of portals of IMRT was $4.37{\pm}1.08mSv$ in average and statistically showed very significant difference among the number of portals (p <.01). Number of portals and photoneutron dose are shown that the correlation coefficient is 0.570, highly statistically significant positive correlation (p <.01). As a result of the linear regression analysis of number of portals and photoneutron dose, it showed that photoneutron dose significantly increased by 0.373 times in average as the number of portals increased by 1 stage. In conclusion, this study can be expected to be used as a quantitative basic data to select an appropriate IMRT plans regarding photoneutron dose in radiation treatment for prostate cancer.

Neutron dosimetry depending on the number of portals for prostate cancer IMRT(Intensity-Modulated Radiation Therapy) (전립선암의 세기조절 방사선치료 시 조사문수별 중성자선량 평가)

  • Lee, Joo-Ah;Son, Soon-Yong;Min, Jung-Whan;Choi, Kwan-Woo;Na, Sa-Ra;Jeong, Hoi-Woun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3734-3740
    • /
    • 2014
  • The aim of this study was provide basic information and establish the criteria in radiation therapy planning by measuring the absorbed neutron dose of normal tissues and lesions according to the number of portals. From September 2013 to January 2014, 20 patients who were diagnosed with prostate cancer and were previously treated with radiation therapy were replanned retrospectively to measure the absorbed neutron dose distribution according to the number of portals. The absorbed neutron dose was measured in each of the 5, 7 and 9 portals using a 15 MV energy, which meant a therapeutic dose of 220 cGy. The optical stimulation luminescence dosimeter was separated by 20cm and 60cm away from the center of the field of view. As a result, the average radiation dose in the abdomen appeared to have a positive relationship with the number of portals, which was statistically significant (p<.05). The average radiation dose was $4.34{\pm}1.08$. The average radiation dose in the thyroid was $2.71{\pm}.37$. Although it showed a positive relationship with the number of portals, it did not have statistical significance. The number of portals and the neutron dose depending on the position showed a significant positive relationship, particularly in the abdomen. As a result of linear regression analysis, as the number of the portal increased in steps, the average volume of the neutrons increased significantly (0.416 times). In conclusion, efficient selection of the number of portals is needed considering the difference in the absorbed neutron dose in the normal tissues depending on the number of the portals.

Radiological Safety Assessment of a HLW Repository in Korea using MASCOT-K (MASCOT-K를 이용한 가상 방사성폐기물 처분장에서의 종합성능 평가)

  • 황용수;이연명;강철형
    • Tunnel and Underground Space
    • /
    • v.10 no.4
    • /
    • pp.553-558
    • /
    • 2000
  • Since 1977, KAERI has conducted the fundamental R&D on the permanent disposal of potential HLW repository in Korea. The first ten year project is divided into three short-term phase studies. The first phase study which shall be finished in March of 2000, has the prime target to develop the disposal concept of HLW. Throughout this study the preliminary and generic disposal repository system has been introduced. The potential repository is proposed to be emplaced into crystalline rocks which is the most common rock types in Korea. The proposed depth of the repository is between 300 to 700 meter. The numerical code, MASCOT-K was developed to asserts the long term safety of the proposed repository concept. Based on this conceptual design preliminary safely assessment was performed. Results show that for the given disposal system the potential radioactive release it well below the regulatory limit.

  • PDF

The Study on the Confidence Building for Evaluation Methods of a Fracture System and Its Hydraulic Conductivity (단열체계 및 수리전도도의 해석신뢰도 향상을 위한 평가방법 연구)

  • Cho Sung-Il;Kim Chun-Soo;Bae Dae-Seok;Kim Kyung-Su;Song Moo-Young
    • The Journal of Engineering Geology
    • /
    • v.15 no.2 s.42
    • /
    • pp.213-227
    • /
    • 2005
  • This study aims to assess the problems with investigation method and to suggest the complementary solutions by comparing the predicted data from surface investigation with the outcome data from underground cavern. In the study area, one(NE-1) of 6 fracture zones predicted during the surface investigation was only confirmed in underground caverns. Therefore, it is necessary to improve the confidence level for prediction. In this study, the fracture classification criteria was quantitatively suggested on the basis of the BHTV images of NE-1 fracture zone. The major orientation of background fractures in rock mass was changed at the depth of the storage cavern, the length and intensity were decreased. These characteristics result in the deviation of predieted predicted fracture properties and generate the investigation bias depending on the bore hole directions and investigated scales. The evaluation of hydraulic connectivity in the surface investigation stage needs to be analyze by the groundwater pressures and hydrochemical properties from the monitoring bore hole(s) equipped with a double completion or multi-packer system during the test bore hole is pumping or injecting. The hydraulic conductivities in geometric mean measured in the underground caverns are 2-3 times lower than those from the surface and furthermore the horizontal hydraulic conductivity in geometric mean is six times lower than the vertical one. To improve confidence level of the hydraulic conductivity, the orientation of test hole should be considered during the analysis of the hydraulic conductivity and the methodology of hydro-testing and interpretation should be based on the characteristics of rock mass and investigation purposes.