Proceedings of the Korea Inteligent Information System Society Conference
/
2003.05a
/
pp.429-434
/
2003
본 논문은 작업일정계획에서 부하평준화 문제를 효율적으로 해결하기 위하여 tabu 탐색을 적용함에 있어서 확률적 선별에 기반하여 이웃해를 생성하는 방법을 제시한다. 이웃해 생성은 부하평준화를 위해 일정을 조정할 대상 작업을 선택하는 단계와 선택된 작업에 대해 일정 조정의 방향을 결정하는 단계로 구분된다. 확률적 선별에 기반한 이웃해 생성은 우선 무작위로 추출된 작업에 대해서 탐색의 질을 개선시킬 수 있는 가능성에 대한 추정치에 따라 확률을 부여하고, 이 확률에 기반하여 선택여부를 결정함으로써 이웃해를 선별하는 방법이다. 실제 현장의 부하평준화 문제를 대상으로 이웃해 생성 방법으로 무작위 방법, 그리디(greedy) 방법과의 비교 실험을 통해 확률적 선별에 기반한 이웃해 생성 방법의 성능을 검증하였다.
The Journal of the Convergence on Culture Technology
/
v.5
no.4
/
pp.283-288
/
2019
In order to overcome the students' lack of information and experience, we developed a content planning tree that utilizes a decision tree. The content planning tree consists of a tree trunk creation step in which students select a theme and a story to develop, a parent branch generation step for selecting a category that can be developed based on the story, a child branch generation step for selecting the interesting "effect" method of producing the content effectively, a leaf generation step for selecting a multimedia expression 'element' to be visualized. The educational model was applied to game planning design and information visualization lectures, and provides examples of the categories, effects, and elements used in each lecture. The model was used for 145 team projects and the efficiency was confirmed by a step-by-step learning process.
This study suggests the output of the fingerprint doorlock design development through the structured methodology of concept selection in the process of design development, after characterizing the doorlock product itself. All of the early phases of product development are very important on eventual product success. Concept selection is the process of evaluating concepts with respect to customer needs and other criteria, comparing the relative strength and weaknesses of the concepts, and selecting one or more concepts for further investigation or development. To obtain the ideal concept o( new product, this work used a two-stage concept selection methodology which consist of concept screening and concept scoring. As a result, this study represents the fixed design rendering for mass production.
Proceedings of the Korean Information Science Society Conference
/
2001.04b
/
pp.52-54
/
2001
공간 선택 질의에 사용되는 질의 윈도우로는 직사각형이 주로 사용된다. 하지만, 최근에는 GIS 등과 같은 응용 프로그램들이 성능 향상으로 인해 보다 다양한 종류의 응용이 등장하고 있으므로, 직사각형뿐만 아니라 임의의 다각형 형태의 질의 윈도우에도 적합한 정제 단계 수행 전략에 대해 고려해 볼 필요가 있다. 이러한 전략으로는 기존의 공간 조인에서와 같이 plane-sweep 알고리즘을 이용하는 방법이 일반적이다. 하지만, 공간 데이터와 질의 위도우의 특성을 관찰해보면, 일반적으로 질의 윈도우가 공간 데이터보다 훨씬 간단한 모양으로 구성되어 있음을 알 수 있으므로, 본 논문에서는 이러한 상황에 보다 적합한 정제 단계 수행 방법을 제시하고 있으며, 실험을 통하여 제시한 방법의 우수성을 입증하고 있다.
In the paper, we can select the best safeguard as proposed the definite and systematical method and procedure on risk mitigation of risk management for information system. The practical risk mitigation methodology has a good fulfillment procedure and a definition to fulfill procedure on each phase. So, it is easy to fulfill and can apply to any risk management methodology. The practical risk mitigation is composed of 6 phases, which are the existing safeguard assessment, safeguard means selection, safeguard technique selection, risk admission assessment, cost-effective analysis and safeguard embodiment. The practical risk mitigation's advantages are as follow. Efficient selection of safeguards to apply to risk's features with safeguard's means and techniques before embodying safeguards. Prevention of redundant works and security budgets waste as re-using the existing excellent safeguards through the existing safeguard assessment. Reflection of organization's CEO opinions to require special safeguards for the most important information system.
Journal of the Korean Data and Information Science Society
/
v.28
no.5
/
pp.1077-1085
/
2017
In this study, we have found the major factors which affect Korean women's wage analysing the data provided by 2015 Korea Labor Panel Survey (KLIPS). In general, wage data is difficult to analyze because random sampling is infeasible. Heckman sample selection model is the most widely used method for analysing the data with sample selection. Heckman proposed two kinds of selection models: the one is the model with maximum likelihood method and the other is the Heckman two stage model. Heckman two stage model is known to be robust to the normal assumption of bivariate error terms. Recently, Marchenko and Genton (2012) proposed the Heckman selectiont model which generalizes the Heckman two stage model and concluded that Heckman selection-t model is more robust to the error assumptions. Employing the two models, we carried out the analysis of the data and we compared those results.
Journal of the Korea Society of Computer and Information
/
v.8
no.4
/
pp.111-116
/
2003
We proposed a optimal clock period selection algorithm for low power Register Transfer Level design. The proposed algorithm use the way of maintaining the throughput by reducing supply voltage after improve the system performance in order to minimize the power consumption. In this paper, it select the low power to use pipeline in the transformation of architecture. Also, the proposed algorithm is important the clock period selection in order to maximize the resource sharing. however, it execute the optimal clock period selection algorithm. The experiment result is to set the same result AR and HAL filter on the high level benchmark and to reduce in the case of two pipe stage 10.5% and three pipe stage as many as 33.4%.
The good classifier ensemble should have a high complementarity among classifiers in order to produce a high recognition rate and its size is small in order to be efficient. This paper proposes a classifier ensemble selection algorithm with coarse-to-fine stages. for the algorithm to be successful, the original classifier pool should be sufficiently diverse. This paper produces a large classifier pool by combining several different classification algorithms and lots of feature subsets. The aim of the coarse selection is to reduce the size of classifier pool with little sacrifice of recognition performance. The fine selection finds near-optimal ensemble using genetic algorithms. A hybrid genetic algorithm with improved searching capability is also proposed. The experimentation uses the worldwide handwritten numeral databases. The results showed that the proposed algorithm is superior to the conventional ones.
KIPS Transactions on Software and Data Engineering
/
v.11
no.3
/
pp.107-114
/
2022
In this paper, we have enhanced the risk prediction of hypertension using the feature selection method in the Korean National Health and Nutrition Examination Survey (KNHANES) database of the Korea Centers for Disease Control and Prevention. The study identified various risk factors correlated with chronic hypertension. The paper is divided into three parts. Initially, the data preprocessing step of removes missing values, and performed z-transformation. The following is the feature selection (FS) step that used a factor analysis (FA) based on the feature selection method in the dataset, and feature importance (FI) and multicollinearity analysis (MC) were compared based on FS. Finally, in the predictive analysis stage, it was applied to detect and predict the risk of hypertension. In this study, we compare the accuracy, f-score, area under the ROC curve (AUC), and mean standard error (MSE) for each model of classification. As a result of the test, the proposed MC-FA-RF model achieved the highest accuracy of 80.12%, MSE of 0.106, f-score of 83.49%, and AUC of 85.96%, respectively. These results demonstrate that the proposed MC-FA-RF method for hypertension risk predictions is outperformed other methods.
The Adaboost chooses a good set of features in rounds. On each round, it chooses the optimal feature and its threshold value by minimizing the weighted error of classification. The involved process of classification performs a hard decision. In this paper, we expand the process of classification to a soft fuzzy decision. We believe this expansion could allow some flexibility to the Adaboost algorithm as well as a good performance especially when the size of a training data set is not large enough. The typical Adaboost algorithm assigns a same weight to each training datum on the first round of a training process. We propose a new algorithm to assign different initial weights based on some statistical properties of involved features. In experimental results, we assess that the proposed method shows higher performance than the traditional one.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.