• Title/Summary/Keyword: 단계별 다중 회귀분석법

Search Result 17, Processing Time 0.024 seconds

A Study on Patterning and Grading by the Impact of Traffic Culture Index (교통문화지수 영향요인에 의한 유형화와 영향정도에 관한 연구)

  • Jeong Cheal-Woo;Jung Hun-Young;Ko Sang-Sean
    • Journal of Navigation and Port Research
    • /
    • v.30 no.1 s.107
    • /
    • pp.35-43
    • /
    • 2006
  • This study suggests strategies to prevent traffic accidents by utilizing impact factors per each cluster and the typical patterns of 81 cities based on the statistical analysis of the data concerning the TCI which was developed from the partnership of the Traffic Safety Authority and the Green Traffic Movement Corporation in 2002 and 2003. The Principal Component Analysis and Cluster Analysis on impact factors and TCI result in 4 components and 4 clusters. Also as the results of Stepwise Multiple Regression Analysis examining the relationship between impact factors and TCI, R2 values of these models show high to all clusters. According to the results, we suggest strategies to prevent traffic accidents per cluster concretely and it is necessary to analyze how effective the invested facilities are in reducing traffic accidents in the future.

Comparison of Different Multiple Linear Regression Models for Real-time Flood Stage Forecasting (실시간 수위 예측을 위한 다중선형회귀 모형의 비교)

  • Choi, Seung Yong;Han, Kun Yeun;Kim, Byung Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1B
    • /
    • pp.9-20
    • /
    • 2012
  • Recently to overcome limitations of conceptual, hydrological and physics based models for flood stage forecasting, multiple linear regression model as one of data-driven models have been widely adopted for forecasting flood streamflow(stage). The objectives of this study are to compare performance of different multiple linear regression models according to regression coefficient estimation methods and determine most effective multiple linear regression flood stage forecasting models. To do this, the time scale was determined through the autocorrelation analysis of input data and different flood stage forecasting models developed using regression coefficient estimation methods such as LS(least square), WLS(weighted least square), SPW(stepwise) was applied to flood events in Jungrang stream. To evaluate performance of established models, fours statistical indices were used, namely; Root mean square error(RMSE), Nash Sutcliffe efficiency coefficient (NSEC), mean absolute error (MAE), adjusted coefficient of determination($R^{*2}$). The results show that the flood stage forecasting model using SPW(stepwise) parameter estimation can carry out the river flood stage prediction better in comparison with others, and the flood stage forecasting model using LS(least square) parameter estimation is also found to be slightly better than the flood stage forecasting model using WLS(weighted least square) parameter estimation.

The Estimation of Software Development Effort Using Multiple Regression Method (다중회귀 분석을 이용한 소프트웨어 개발노력추정)

  • Jung Hye-Jung;Yang Hae-Sool;Shin Seok-Kyoo;Lee Sang-Un
    • The KIPS Transactions:PartD
    • /
    • v.11D no.7 s.96
    • /
    • pp.1483-1490
    • /
    • 2004
  • To accomplish a project successfuly, we have to estimate develpment effort accurately. But, development effort is different to software size and operation environment. Usually, we made use of function point for estimating development effort. In this paper. we make use of 789 project data. It is related to development projects in 1990`s. We investigate the variable affecting development effort. Also, we exedcute multiple liner regression analysis for looking linear relation about variables. We find the regression equation for multistage by dividing PDR that influ-enced development effort step by step.

Development of model for prediction of land sliding at steep slopes (급경사지 붕괴 예측을 위한 모형 개발)

  • Park, Ki-Byung;Joo, Yong-Sung;Park, Dug-Keun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.4
    • /
    • pp.691-699
    • /
    • 2011
  • Land sliding is one of well-known nature disaster. As a part of effort to reduce damage from land sliding, many researchers worked on increasing prediction ability. However, because previous studies are conducted mostly by non-statisticians, previously proposed models were hardly statistically justifiable. In this paper, we predicted the probability of land sliding using the logistic regression model. Since most explanatory variables under consideration were correlated, we proposed the final model after backward elimination process.

Logistic Regressions with Sensory Evaluation Data about Hanwoo Steer Beef (한우 거세우 고기 관능평가 데이터의 로지스틱 회귀분석)

  • Lee, Hye-Jung;Kim, Jae-Hee
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.5
    • /
    • pp.857-870
    • /
    • 2010
  • This study was conducted to investigate the relationship between the socio-demographic factors and the Korean consumers palatability evaluation grades with Hanwoo sensory evaluation data from 2006 to 2008 by National Institute of Animal Science. The dichotomy logistic regression model and the multinomial logistic regression model are fitted with the independent variables such as the consumer living location, age, gender occupation, monthly income, beef cut and the the palatability grade as the categorical dependent variable and tenderness, 리avor and juiciness as the continuous dependent variable. Stepwise variable selection procedure is incorporated to find the final model and odds ratios are calculated to nd the associations between categories.

Modelling the Subway Demand Estimation by Station Using the Multiple Regression Analysis by Category (카테고리별 다중회귀분석 방법을 이용한 지하철역별 수요 추정 모형 개발)

  • Shon, Eui-Young;Kwon, Byoung-Woo;Lee, Man-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.1 s.72
    • /
    • pp.33-42
    • /
    • 2004
  • 지하철역별 수요는 개통 후 경과 연도에 따라서 S자 형태로 증가한다. 즉 개통 초기에는 잠재되어 있던 지하철 수요가 시간의 경과에 따라 계속적으로 증가하다가, 개통 후 10$\sim$13년 정도가 경과하면 최대를 나타낸 후 거의 정체하는 현상을 보인다. 그러나 지금까지 지하철 수요를 추정하기 위해서 이용되었던 4단계 모형은 이러한 지하철 수요의 증가 추세를 반영할 수 없기 때문에 실제 수요와 많은 차이를 보였다. 따라서 본 연구에서는 이러한 문제를 해결해 보고자 서울시 지하철 2$\sim$8호선의 실제 수요를 토대로 지하철역별 수요, 특히 순수한 승차인원을 추정하는 모형을 개발하였다. 모형에 적용되는 함수식은 실제 지하철역별 수요와 가장 유사한 형태를 보이고 있는 로지스틱 함수식을 이용하였다. 또한 각각의 지하철역별로 나타나는 상이한 특성은 카테고리로 분류하여 모형에 반영하였다. 카테고리는 토지이용도, 사회경제활동의 규모, 그리고 지하철역의 특성에 따라 분류하였다. 각 카테고리별 특성을 대표하는 독립 변수로 인구 종사자수, 학생수와 개통 후 경과 연도 등을 선정하였다. 그 결과 카테고리별로 추정된 지하철역별 수요는 통계적으로 매우 유의한 것으로 나타났다. 본 연구는 지하철역별로 승차하는 순수한 수요를 보다 정확하게 추정하기 위한 모형을 개발하는 것이 주된 목적이다. 반면에 본 모형을 이용하여 지하철역별 하차 수요 및 횐승 수요를 추정하는 것은 어렵다. 따라서 기존에 지하철 수요를 추정하는 데에 가장 많이 사용된 4단계 모형과 접목하여야 하며, 이에 대한 방안도 본 연구에서 제시하였다.

Optimization for Concurrent Spare Part with Simulation and Multiple Regression (시뮬레이션과 다중 회귀모형을 이용한 동시조달수리부속 최적화)

  • Kim, Kyung-Rok;Yong, Hwa-Young;Kwon, Ki-Sang
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.3
    • /
    • pp.79-88
    • /
    • 2012
  • Recently, the study in efficient operation, maintenance, and equipment-design have been growing rapidly in military industry to meet the required missions. Through out these studies, the importance of Concurrent Spare Parts(CSP) are emphasized. The CSP, which is critical to the operation and maintenance to enhance the availability, is offered together when a equipment is delivered. Despite its significance, th responsibility for determining the range and depth of CSP are done from administrative decision rather than engineering analysis. The purpose of the paper is to optimize the number of CSP per item using simulation and multiple regression. First, the result, as the change of operational availability, was gained from changing the number of change in simulation model. Second, mathematical regression was computed from the input and output data, and the number of CSP was optimized by multiple regression and linear programming; the constraint condition is the cost for optimization. The advantage of this study is to respond with the transition of constraint condition quickly. The cost per item is consistently altered in the development state of equipment. The speed of analysis, that simulation method is continuously performed whenever constraint condition is repeatedly altered, would be down. Therefore, this study is suitable for real development environment. In the future, the study based on the above concept improves the accuracy of optimization by the technical progress of multiple regression.

Use of Spectrophotometry for Quantitative Determination of Soil Clay Content (분광광도계를 이용한 점토함량 분석)

  • Park, Soon-Nam;Kim, Kye-Hoon;Kang, Ji-Young
    • Applied Biological Chemistry
    • /
    • v.48 no.2
    • /
    • pp.183-188
    • /
    • 2005
  • This study was conducted to develop a method for the quantitative determination of soil clay content by spectophotometry. The optimum wavelength obtained with reference clay minerals for spectrophotometry was 500 nm. For the proposed spectrophotometry, 0.5 g of soil sample was put in the 250 ml Erlenmeyer flask and 100 ml dispersing agent was added. After shaking the flask at 130 rpm with a mechanical shaker overnight, the flask was removed from the shaker and was shaken up-and-down for 30 seconds. With a micro-pipet, 4 ml of the suspension was transferred into the previously-inserted cell and the absorbance was measured instantly. Results by the spectrophotometry for clay content analysis were compared with those by the conventional sedimentation technique (the pipet method). The proposed equation was $y\;=\;38.03x_1-0.17x_2-1.17$, where y, $x_1$, and $x_2$ were clay content (%) by the pipet method, water content corrected clay content (%) by spectrophotometry, and organic matter content ($g{\cdot}kg^{-1}$), respectively. The regression coefficient for the equation was $r\;=\;0.984^{**}$, indicating highly significant correlation between the results of the two methods.

Development of Forest Volume Estimation Model Using Airborne LiDAR Data - A Case Study of Mixed Forest in Aedang-ri, Chunyang-myeon, Bonghwa-gun - (항공 LiDAR 자료를 이용한 산림재적추정 모델 개발 - 봉화군 춘양면 애당리 혼효림을 대상으로 -)

  • CHO, Seung-Wan;KIM, Yong-Ku;PARK, Joo-Won
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.3
    • /
    • pp.181-194
    • /
    • 2017
  • This study aims to develop a regression model for forest volume estimation using field-collected forest inventory information and airborne LiDAR data. The response variable of the model is forest stem volume, was measured by random sampling from each individual plot of the 30 circular sample plots collected in Bonghwa-gun, Gyeong sangbuk-do, while the predictor variables for the model are Height Percentiles(HP) and Height Bin(HB), which are metrics extracted from raw LiDAR data. In order to find the most appropriate model, the candidate models are constructed from simple linear regression, quadratic polynomial regression and multiple regression analysis and the cross-validation tests were conducted for verification purposes. As a result, $R^2$ of the multiple regression models of $HB_{5-10}$, $HB_{15-20}$, $HB_{20-25}$, and $HBgt_{25}$ among the estimated models was the highest at 0.509, and the PRESS statistic of the simple linear regression model of $HP_{25}$ was the lowest at 122.352. $HB_{5-10}$, $HB_{15-20}$, $HB_{20-25}$, and $HBgt_{25}-based$ models, thus, are comparatively considered more appropriate for Korean forests with complicated vertical structures.

Quantitative EEG research by the brain activities on the various fields of the English education (영어학습 유형별 뇌기능 활성화에 대한 정량뇌파연구)

  • Kwon, Hyung-Kyu
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.3
    • /
    • pp.541-550
    • /
    • 2009
  • This research attempted to find out any implications for strategies to design and develop the connections between the activities of the brain function and the fields of English learning (dictation, word level, speaking, word memory, listening). Thus, in developing the brain based learning model for the English education, attempts need to be made to help learners to keep the whole brain toward learning. On this point, this study indicated the significant results for the exclusive brain location and the brainwaves on the each English learning field by the quantitative EEG analysis. The results of this study presented the guidelines for the balanced development of the left brain and the right brain to train the specific site of the brain connected to the English learning fields. In addition, whole brain training model is developed by the quantitative EEG data not by the theoretical learning methods focused on the right brain training.

  • PDF