• Title/Summary/Keyword: 다 물체 동역학

Search Result 335, Processing Time 0.032 seconds

Rigid Body Dynamic Analysis on the Spent Nuclear Fuel Disposal Canister under Accidental Drop and Impact to the Ground: Theory (사고로 지면으로 추락낙하 충돌하는 고준위폐기물 처분용기에 대한 기구동역학 해석: 이론)

  • Kwon, Young-Joo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.5
    • /
    • pp.359-371
    • /
    • 2013
  • This paper is the first paper among two papers which constitute the paper about the rigid body dynamic analysis on the spent nuclear disposal canister under accidental drop and impact on to the ground. This paper performed the general theoretical study on the rigid body dynamic analysis. Through this study the impulsive force which is occurring in the spent nuclear fuel disposal canister under accidental drop and impact to the ground and required for the structural safety design of the canister is intended to be theoretically formulated. The main content of the theoretical study is about the equation of motion in the multibody dynamics. On the basis of this study the impulsive force which is occurring in the multibody in the case of collision between multibody is theoretically formulated. The application of this theoretically formulated impulsive force to computing the impulsive force occurring in the spent nuclear fuel disposal canister under accidental drop and impact to the ground is investigated.

Electronic and mechanical engineering division (다물체 시스템을 위한 민감도 해석)

  • Lee, Jong-nyun;Park, Soo-hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.3
    • /
    • pp.50-56
    • /
    • 1997
  • 본 논문은 다물체동역학에서의 민감도해석을 위하여 개발된 혼합법(Mixed method)을 보여준다. 이 방법은 해석적인 미분의 유도와 수치적인 미분의 장점을 함께 사용한다. 해석적인 유도는 기본적인 전체의 미분에서 사용 되며 여기서 나온 각 세부 미분항은 수치적인 미분방법에 의존한다. 이로인하여 세부미분항을 다물체의 운동방정식 에서 유도할 때 발생하는 어려움을 제거한다. 여기서 사용되는 운동 방정식은 Joint Coordinate 방정식을 사용하며, 이 방정식의 계산시간과 정확도에 의해 민감도해석에서도 정확도와 계산시간의 효율을 향상시킬 수 있게 된다. 예제로서 자동차 Suspension 시스템의 승차감을 최적화하기 위한 민감도 해석을 수행하였으며, 여기서 혼합법이 차등미분법과 상응한 결과를 보였다.

  • PDF

Dynamic Analysis of Wave Energy Generation System by Using Multibody Dynamics (다물체 동역학을 이용한 파력발전기의 동적거동 분석)

  • Jang, Jin-Seok;Sohn, Jeong-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1579-1584
    • /
    • 2011
  • This paper discusses an energy system that can convert wave energy into electrical energy. This wave energy generation system is movable and has 12 arms and one generator. A multibody dynamic model for this system is established by using kinematic constraints. A gear mechanism, several kinematic constraints, and force elements are included in the model. Wave forces are obtained numerically from the time domain formulation based on the Morison equation. The MSC/ADAMS program is employed to carry out dynamic analysis of the wave energy generation system. The dynamic behavior responses of this system are analyzed for design verification. According to the results of the dynamic analysis, the yaw motion is relatively stable and kinetic energy sufficient to generate electrical energy is obtained when the wave height exceeds 1m.

좌표계 연성에 의한 동력전달계 포함 차량 운동 시뮬레이션 연구

  • 양홍익;정일호;윤지원;박태원;한형석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.92-92
    • /
    • 2004
  • 최근의 자동차 산업의 발달과 컴퓨터 산업의 발전으로 인해 컴퓨터를 이용한 연구개발이 중요시되고 있다. 때문에 CM (Computer Aided Engineering) 분야는 설계의 비용과 손실을 줄이고 좀 더 경쟁력 있는 제품을 생산하기 위한 방편으로 자리 잡고 있다. 다물체 동역학 해석 분야는 기존의 실험으로는 해석하기 어려웠던 복잡한 자동차의 거동 해석을 가능하게 함으로서 설계에 있어 좋은 방향을 제시하고 있다.(중략)

  • PDF

The Efficient Dynamic Modeling of a Manipulator Robot System (제조 공정용 로봇 매니퓰레이터의 효율적 다물체 동역학 해석 모델링 기술 개발)

  • Song, In-Ho;Ryu, Han-Sik;Choi, Jin-Hwan
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.2
    • /
    • pp.155-164
    • /
    • 2015
  • Recently, the robot manipulators are needed more slim size and longer reach and more accurate movement for increasing productivity. So, in this paper, the simulation modeling method and the efficient modeling method for new slim & long reach robot has been investigated for forecasting the slim robot performance before making prototype. To do this investigation, the major parts of robot driving system such as motor, belt and reducer devices and parts assembly method have been investigated mainly. And then, using this developed modeling method the new designed robot will be forecasted about the dynamic performance of new designed robot.

Development of Small Manipulator Platform for Composite Structure Repair (복합재 구조물 유지보수를 위한 소형 매니퓰레이터 플랫폼 개발)

  • Geun-Su Song;Hyo-Hun An;Kwang-Bok Shin
    • Composites Research
    • /
    • v.36 no.2
    • /
    • pp.108-116
    • /
    • 2023
  • In this paper, kinematic design and multi-body dynamics analysis were conducted to develop a small manipulator platform for automating the maintenance of structures made of composite materials. To design manipulator kinematically, the existing composite repair process was considered. The 3D design was conducted after selecting the basic specifications of manipulator and end-effecter in consideration of the patch lamination process for repair. Then, variables necessary for simulation and control were generated in MATLAB through inverse kinematic analysis. To evaluate the structural stability of platform, multibody dynamics analysis was conducted using Altair Inspire and Optistruct. Based on the simulation conducted in Inspire, multibody dynamics analysis was conducted in Optistruct, and structural stability was verified through the results of maximum displacement and Von-Mises stress over time. To verify the design, manufacturing and controlling of platform were conducted and compared with the simulation. It was confirmed that the actual repair process path and the simulation showed a good agreement.

Wind Turbine Simulation Program Development using an Aerodynamics Code and a Multi-Body Dynamics Code (풍력발전시스템의 유연체 다물체 동역학 시뮬레이션 프로그램 개발)

  • Song, Jin-Seop;Rim, Chae-Whan;Nam, Yong-Yun;Bae, Dae-Sung
    • New & Renewable Energy
    • /
    • v.7 no.4
    • /
    • pp.50-57
    • /
    • 2011
  • A wind turbine simulation program for the coupled dynamics of aerodynamics, elasticity, multi-body dynamics and controls of turbine is newly developed by combining an aero-elastic code and a multi-body dynamics code. The aero-elastic code, based on the blade momentum theory and generalized dynamic wake theory, is developed by NREL(National Renewable Energy Laboratory, USA). The multi-body dynamics code is commercial one which is capable of accounting for geometric nonlinearity and twist deflection. A turbulent wind load case is simulated for the NREL 5-MW baseline wind turbine model by the developed program and FAST. As a result, the two results agree well enough to verify the reliability of the developed program.

An Efficient Solution for Multibody Dynamics Composed of Flexible Beams (유연한 보로 구성된 다물체 동역학의 효율적인 해법)

  • 이기수;금영탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2298-2305
    • /
    • 1992
  • To obtain the convenient solution of the multibody dynamic systems composed of flexible beams, linear finite element technique is adopted and the nodal coordinates are interpolated in the global inertia frame. Mass matrix becomes an extremely simple constant matrix and the force vector also becomes extremely simple because Coriolis acceleration and centrifugal force are not required. And the elastic force is also simply computed from the moving frame attached to the material. To solve the global differential algebraic euation. an ODE technique is adopted after Lagrange multiplier is computed by the accelerated iterative technique, and the time demanding procedures such as Newton-Raphson iterations and decomposition of the big matrix are not required. The accuracy of the present solution is checked by a well-known example problem.

Study on a 2-Dimensional Dynamic Modeling Technique to Analyze the Overriding Phenomena of Rollingstock (열차의 타고오름 해석을 위한 2차원 충돌동역학 모델링 기법 연구)

  • Kim, Geo-Young;Koo, Jeong-Seo;Kwon, Tae-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.1
    • /
    • pp.11-18
    • /
    • 2011
  • This paper proposed a new 2-D multi-body dynamic modeling technique to analyze overriding behaviors taking place during train collision. This dynamic model is composed of nonlinear springs, dampers and masses by considering the deformable characteristics of carbodies as well as energy absorbing structures and components. By solving this dynamic model for rollingstock, energy absorbing capacities of collision elements, accelerations of passenger sections, impact forces applied to interconnecting devices, and overriding displacements can be well estimated. For a case study, we chose KHST (Korean High Speed Train), obtained crush characteristic data of each carbody section from 3-D finite element analysis, and established a 2-D multi-body dynamic model. This 2-D dynamic model was simulated under the train-to-train collision scenarios, and evaluated with 3-D virtual testing model. It was founded from the simulation results that this 2-D dynamic model could well predict overriding behaviors, and the modeling technique of carbody deformation was very important in overriding estimation.

Development and Implementation of Real Time Multibody Vehicle Dynamics Model (실시간 다물체 차량 동역학 모델 개발 및 구현)

  • O, Yeong-Seok;Kim, Seong-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.834-840
    • /
    • 2001
  • A real time multibody vehicle dynamics model has been developed and implemented using a subsystem synthesis method based on recursive formulation. To verify real time simulation capability the developed model has been applied to HMMWV(High Mobility Multipurpose Wheeled Vehicle) with steering system. For the kinematically driven steering system, the coupled front suspension-steering subsystem can be decoupled into two SLA suspension subsystems, which improves the efficiency of simulation. To investigate theoretical efficiency, operational counting method has been also employed to compare the proposed model with the conventional recursive dynamics model. Various simulations such as unsymmetric bump run, step steering(J-turn) and sine steering input test have been carried out to verify the real time feasibility of the proposed model.