• Title/Summary/Keyword: 다층 감쇠보

Search Result 2, Processing Time 0.019 seconds

Finite Element Vibration Analysis of Multi-layered Damped Sandwich Beam with Complex Shear Modulus (복소 전단탄성계수를 갖는 다층 감쇠보의 유한요소 진동 해석)

  • Bae, Seung-Hoon;Won, Sung-Gyu;Jeong, Weui-Bong;Cho, Jin-Rae;Bae, Soo-Ryong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.1
    • /
    • pp.9-17
    • /
    • 2011
  • In this paper, the general equation of motion of damped sandwich beam with multi-viscoelastic material layer was derived based on the equation presented by Mead and Markus. The viscoelastic layer, which has characteristics of complex shear modulus, was assumed to be dominantly under shear deformation. The equation of motion of n-layered damped sandwich beam in bending could be represented by (n+3)th order ordinary differential equation. Finite element model for the n-layered damped sandwich beam was formulated and programmed using higher order shape functions. Several numerical examples were implemented to show the effects of damped material.

Forced Vibration Analysis of Multi-Layered Damped Sandwich Beam (샌드위치형 다층 감쇠보의 강제진동 응답 해석)

  • Won, Sung-Gyu;Jung, Weui-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.608-611
    • /
    • 2005
  • In this paper the general equation of motion of damped sandwich beam including arbitrary viscoelastic material layer was derived based on the equation presented by Mead and Markus. The equation of motion of n-layered sandwich beam was represented by (n+3)th order ordinary differential equation. It was verified that the general equation of motion derived in this paper could represent the equations of motions for single-layered, three-layered, five-layered and multi-layered damped beam. Finite element method for the arbitrary-layered damped beam was formulated and programmed using higher order shape functions. Several numerical examples were implemented to show the effects of damped material.

  • PDF