• Title/Summary/Keyword: 다차원 데이터 생성

Search Result 106, Processing Time 0.023 seconds

A study on searching image by cluster indexing and sequential I/O (연속적 I/O와 클러스터 인덱싱 구조를 이용한 이미지 데이타 검색 연구)

  • Kim, Jin-Ok;Hwang, Dae-Joon
    • The KIPS Transactions:PartD
    • /
    • v.9D no.5
    • /
    • pp.779-788
    • /
    • 2002
  • There are many technically difficult issues in searching multimedia data such as image, video and audio because they are massive and more complex than simple text-based data. As a method of searching multimedia data, a similarity retrieval has been studied to retrieve automatically basic features of multimedia data and to make a search among data with retrieved features because exact match is not adaptable to a matrix of features of multimedia. In this paper, data clustering and its indexing are proposed as a speedy similarity-retrieval method of multimedia data. This approach clusters similar images on adjacent disk cylinders and then builds Indexes to access the clusters. To minimize the search cost, the hashing is adapted to index cluster. In addition, to reduce I/O time, the proposed searching takes just one I/O to look up the location of the cluster containing similar object and one sequential file I/O to read in this cluster. The proposed schema solves the problem of multi-dimension by using clustering and its indexing and has higher search efficiency than the content-based image retrieval that uses only clustering or indexing structure.

A Vector Tagging Method for Representing Multi-dimensional Index (다차원 인덱스를 위한 벡터형 태깅 연구)

  • Jung, Jae-Youn;Zin, Hyeon-Cheol;Kim, Chong-Gun
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.9
    • /
    • pp.749-757
    • /
    • 2009
  • A Internet user can easily access to the target information by web searching using some key-words or categories in the present Internet environment. When some meta-data which represent attributes of several data structures well are used, then more accurate result which is matched with the intention of users can be provided. This study proposes a multiple dimensional vector tagging method for the small web user group who interest in maintaining and sharing the bookmark for common interesting topics. The proposed method uses vector tag method for increasing the effect of categorization, management, and retrieval of target information. The vector tag composes with two or more components of the user defined priority. The basic vector space is created time of information and reference value. The calculated vector value shows the usability of information and became the metric of ranking. The ranking accuracy of the proposed method compares with that of a simply link structure, The proposed method shows better results for corresponding the intention of users.

Medical Diagnosis Problem Solving Based on the Combination of Genetic Algorithms and Local Adaptive Operations (유전자 알고리즘 및 국소 적응 오퍼레이션 기반의 의료 진단 문제 자동화 기법 연구)

  • Lee, Ki-Kwang;Han, Chang-Hee
    • Journal of Intelligence and Information Systems
    • /
    • v.14 no.2
    • /
    • pp.193-206
    • /
    • 2008
  • Medical diagnosis can be considered a classification task which classifies disease types from patient's condition data represented by a set of pre-defined attributes. This study proposes a hybrid genetic algorithm based classification method to develop classifiers for multidimensional pattern classification problems related with medical decision making. The classification problem can be solved by identifying separation boundaries which distinguish the various classes in the data pattern. The proposed method fits a finite number of regional agents to the data pattern by combining genetic algorithms and local adaptive operations. The local adaptive operations of an agent include expansion, avoidance and relocation, one of which is performed according to the agent's fitness value. The classifier system has been tested with well-known medical data sets from the UCI machine learning database, showing superior performance to other methods such as the nearest neighbor, decision tree, and neural networks.

  • PDF

Access Control Policy of Data Considering Varying Context in Sensor Fusion Environment of Internet of Things (사물인터넷 센서퓨전 환경에서 동적인 상황을 고려한 데이터 접근제어 정책)

  • Song, You-jin;Seo, Aria;Lee, Jaekyu;Kim, Yei-chang
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.9
    • /
    • pp.409-418
    • /
    • 2015
  • In order to delivery of the correct information in IoT environment, it is important to deduce collected information according to a user's situation and to create a new information. In this paper, we propose a control access scheme of information through context-aware to protect sensitive information in IoT environment. It focuses on the access rights management to grant access in consideration of the user's situation, and constrains(access control policy) the access of the data stored in network of unauthorized users. To this end, after analysis of the existing research 'CP-ABE-based on context information access control scheme', then include dynamic conditions in the range of status information, finally we propose a access control policy reflecting the extended multi-dimensional context attribute. Proposed in this paper, access control policy considering the dynamic conditions is designed to suit for IoT sensor fusion environment. Therefore, comparing the existing studies, there are advantages it make a possible to ensure the variety and accuracy of data, and to extend the existing context properties.

Nearest-neighbor Rule based Prototype Selection Method and Performance Evaluation using Bias-Variance Analysis (최근접 이웃 규칙 기반 프로토타입 선택과 편의-분산을 이용한 성능 평가)

  • Shim, Se-Yong;Hwang, Doo-Sung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.10
    • /
    • pp.73-81
    • /
    • 2015
  • The paper proposes a prototype selection method and evaluates the generalization performance of standard algorithms and prototype based classification learning. The proposed prototype classifier defines multidimensional spheres with variable radii within class areas and generates a small set of training data. The nearest-neighbor classifier uses the new training set for predicting the class of test data. By decomposing bias and variance of the mean expected error value, we compare the generalization errors of k-nearest neighbor, Bayesian classifier, prototype selection using fixed radius and the proposed prototype selection method. In experiments, the bias-variance changing trends of the proposed prototype classifier are similar to those of nearest neighbor classifiers with all training data and the prototype selection rates are under 27.0% on average.

An Index-Based Approach for Subsequence Matching Under Time Warping in Sequence Databases (시퀀스 데이터베이스에서 타임 워핑을 지원하는 효과적인 인덱스 기반 서브시퀀스 매칭)

  • Park, Sang-Hyeon;Kim, Sang-Uk;Jo, Jun-Seo;Lee, Heon-Gil
    • The KIPS Transactions:PartD
    • /
    • v.9D no.2
    • /
    • pp.173-184
    • /
    • 2002
  • This paper discuss an index-based subsequence matching that supports time warping in large sequence databases. Time warping enables finding sequences with similar patterns even when they are of different lengths. In earlier work, Kim et al. suggested an efficient method for whole matching under time warping. This method constructs a multidimensional index on a set of feature vectors, which are invariant to time warping, from data sequences. For filtering at feature space, it also applies a lower-bound function, which consistently underestimates the time warping distance as well as satisfies the triangular inequality. In this paper, we incorporate the prefix-querying approach based on sliding windows into the earlier approach. For indexing, we extract a feature vector from every subsequence inside a sliding window and construct a multidimensional index using a feature vector as indexing attributes. For query processing, we perform a series of index searches using the feature vectors of qualifying query prefixes. Our approach provides effective and scalable subsequence matching even with a large volume of a database. We also prove that our approach does not incur false dismissal. To verify the superiority of our approach, we perform extensive experiments. The results reveal that our approach achieves significant speedup with real-world S&P 500 stock data and with very large synthetic data.

A Hybrid System of Wavelet Transformations and Neural Networks Using Genetic Algorithms: Applying to Chaotic Financial Markets (유전자알고리즘을 이용한 웨이블릿분석 및 인공신경망기법의 통합모형구축)

  • Shin, Taeksoo;Han, Ingoo
    • Proceedings of the Korea Database Society Conference
    • /
    • 1999.06a
    • /
    • pp.271-280
    • /
    • 1999
  • 인공신경망을 시계열예측에 적용하는 경우에 고려되어야 할 문제중, 특히 모형에 적합한 입력변수의 생성이 중요시되고 있는데, 이러한 분야는 인공신경망의 모형생성과정에서 입력변수에 대한 전처리기법으로써 다양하게 제시되어 왔다. 가장 최근의 입력변수 전처리기법으로써 제시되고 있는 신호처리기법은 전통적 주기분할처리방법인 푸리에변환기법(Fourier transforms)을 비롯하여 이를 확장시킨 개념인 웨이블릿변환기법(wavelet transforms) 등으로 대별될 수 있다. 이는 기본적으로 시계열이 다수의 주기(cycle)들로 구성된 상이한 시계열들의 집합이라는 가정에서 출발하고 있다. 전통적으로 이러한 시계열은 전기 또는 전자공학에서 주파수영역분할, 즉 고주파 및 저주파수를 분할하기 위한 기법에 적용되어 왔다. 그러나, 최근에는 이러한 연구가 다양한 분야에 활발하게 응용되기 시작하였으며, 그 중의 대표적인 예가 바로 경영분야의 재무시계열에 대한 분석이다 전통적으로 재무시계열은 장, 단기의사결정을 가진 시장참여자들간의 거래특성이 시계열에 각기 달리 가격으로 반영되기 때문에 이러한 상이한 집단들의 고유한 거래움직임으로 말미암아 예를 들어, 주식시장이 프랙탈구조를 가지고 있다고 보기도 한다. 이처럼 재무시계열은 다양한 사회현상의 집합체라고 볼 수 있으며, 그만큼 예측모형을 구축하는데 어려움이 따른다. 본 연구는 이러한 시계열의 주기적 특성에 기반을 둔 신호처리분석으로서 기존의 시계열로부터 노이즈를 줄여 주면서 보다 의미 있는 정보로 변환시켜 줄 수 있는 웨이블릿분석 방법론을 새로운 필터링기법으로 사용하여 현재 많은 연구가 진행되고 있는 인공신경망과의 모형결합을 통해 기존연구와는 다른 새로운 통합예측방법론을 제시하고자 한다. 본 연구에서 제시하는 통합방법론은 크게 2단계 과정을 거쳐 예측모형으로 완성이 된다. 즉, 1차 모형단계에서 원시 재무시계열은 먼저 웨이블릿분석을 통해서 노이즈가 필터링 되는 동시에, 과거 재무시계열의 프랙탈 구조, 즉 비선형적인 움직임을 보다 잘 반영시켜 주는 다차원 주기요소를 가지는 시계열로 분해, 생성되며, 이렇게 주기에 따라 장단기로 분할된 시계열들은 2차 모형단계에서 신경망의 새로운 입력변수로서 사용되어 최종적인 인공 신경망모델을 구축하는 데 반영된다.

  • PDF

H*-tree/H*-cubing-cubing: Improved Data Cube Structure and Cubing Method for OLAP on Data Stream (H*-tree/H*-cubing: 데이터 스트림의 OLAP를 위한 향상된 데이터 큐브 구조 및 큐빙 기법)

  • Chen, Xiangrui;Li, Yan;Lee, Dong-Wook;Kim, Gyoung-Bae;Bae, Hae-Young
    • The KIPS Transactions:PartD
    • /
    • v.16D no.4
    • /
    • pp.475-486
    • /
    • 2009
  • Data cube plays an important role in multi-dimensional, multi-level data analysis. Meeting on-line analysis requirements of data stream, several cube structures have been proposed for OLAP on data stream, such as stream cube, flowcube, S-cube. Since it is costly to construct data cube and execute ad-hoc OLAP queries, more research works should be done considering efficient data structure, query method and algorithms. Stream cube uses H-cubing to compute selected cuboids and store the computed cells in an H-tree, which form the cuboids along popular-path. However, the H-tree layoutis disorderly and H-cubing method relies too much on popular path.In this paper, first, we propose $H^*$-tree, an improved data structure, which makes the retrieval operation in tree structure more efficient. Second, we propose an improved cubing method, $H^*$-cubing, with respect to computing the cuboids that cannot be retrieved along popular-path when an ad-hoc OLAP query is executed. $H^*$-tree construction and $H^*$-cubing algorithms are given. Performance study turns out that during the construction step, $H^*$-tree outperforms H-tree with a more desirable trade-off between time and memory usage, and $H^*$-cubing is better adapted to ad-hoc OLAP querieswith respect to the factors such as time and memory space.

Neural networks optimization for multi-dimensional digital signal processing in IoT devices (IoT 디바이스에서 다차원 디지털 신호 처리를 위한 신경망 최적화)

  • Choi, KwonTaeg
    • Journal of Digital Contents Society
    • /
    • v.18 no.6
    • /
    • pp.1165-1173
    • /
    • 2017
  • Deep learning method, which is one of the most famous machine learning algorithms, has proven its applicability in various applications and is widely used in digital signal processing. However, it is difficult to apply deep learning technology to IoT devices with limited CPU performance and memory capacity, because a large number of training samples requires a lot of memory and computation time. In particular, if the Arduino with a very small memory capacity of 2K to 8K, is used, there are many limitations in implementing the algorithm. In this paper, we propose a method to optimize the ELM algorithm, which is proved to be accurate and efficient in various fields, on Arduino board. Experiments have shown that multi-class learning is possible up to 15-dimensional data on Arduino UNO with memory capacity of 2KB and possible up to 42-dimensional data on Arduino MEGA with memory capacity of 8KB. To evaluate the experiment, we proved the effectiveness of the proposed algorithm using the data sets generated using gaussian mixture modeling and the public UCI data sets.

Association rule thresholds of similarity measures considering negative co-occurrence frequencies (동시 비 발생 빈도를 고려한 유사성 측도의 연관성 규칙 평가 기준 활용 방안)

  • Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.6
    • /
    • pp.1113-1121
    • /
    • 2011
  • Recently, a variety of data mining techniques has been applied in various fields like healthcare, insurance, and internet shopping mall. Association rule mining is a popular and well researched method for discovering interesting relations among large set of data items. Association rule mining is the method to quantify the relationship between each set of items in very huge database based on the association thresholds. There are three primary quality measures for association rules; support and confidence and lift. In this paper we consider some similarity measures with negative co-occurrence frequencies which is widely used in cluster analysis or multi-dimensional analysis as association thresholds. The comparative studies with support, confidence and some similarity measures are shown by numerical example.