• Title/Summary/Keyword: 다차원 데이터 생성

검색결과 106건 처리시간 0.023초

저차원 집계 테이블들을 사용한 고차원 데이터의 온라인 분석 (Analysis of High Dimensional Data using Low Dimensional Summary Tables)

  • 최혜정;김명
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (1)
    • /
    • pp.16-18
    • /
    • 2002
  • 다차원 데이터를 온라인으로 분석하기 위해서는 사전에 집계 테이블들을 계산해 둔다. 대용량 고차원 데이터의 경우는 집계 테이블의 분량이 천문학적으로 방대하기 때문에 사전 집계 계산이 현실적으로 불가능한 경우가 많다. 고차원 데이터 처리에 관한 연구로는 데이터의 차원 수를 감소시키거나 인덱스를 압축하여 질의처리 시간을 단축하려는 연구를 들 수 있는데, 이러한 방법들은 고차원 데이터의 온라인 분석시에 발생하는 데이터 폭발 현상을 근본적으로 해결하지는 못한다. 본 연구에서는 고차원 데이터가 분석될 때 실제로 저차원 집계 테이블들이 주로 사용된다는 점에 착안하여 데이터 폭발 현상을 감소시키면서 데이터를 분석하는 방안을 제시한다 이 방법은 사전 집계 연산을 할 때 크기가 방대한 고차원 집계 테이블들의 생성을 생략하고, 3-6차원 또는 그 이하 차원의 집계 테이블들만을 고속으로 동시에 생성하는 방법이다.

  • PDF

XML을 이용한 웹 정보 추출 및 다차원 분석 (Web Information Extraction and Multidimensional Analysis Using XML)

  • 박병권
    • 한국멀티미디어학회논문지
    • /
    • 제11권5호
    • /
    • pp.567-578
    • /
    • 2008
  • 인터넷에 있는 방대한 양의 웹 페이지들을 분석하기 위해서는 웹 페이지에 내재된 정보를 추출하는 것이 필요하다. 본 논문에서는 웹 페이지로부터 정보를 추출하고 이를 XML 문서로 변환하여 다차원적으로 분석하는 방법을 제안한다. 웹 페이지로부터 정보를 추출하기 위하여 두 종류의 언어를 제안한다. 하나는 객체지향 모델에 의거하여 웹 정보 추출 규칙을 기술하기 위한 것이고, 다른 하나는 추출하고자 하는 정보를 찾기 위한 HTML 태그 패턴을 정규식으로 기술하기 위한 것이다. XML 문서에 대한 다차원 분석을 위하여 관계형 데이터에 대해 하는 것처럼 웨어하우스를 구축하고 이로부터 다양한 큐브를 생성하는 방법을 제안한다. 마지막으로 본 논문에서 제안한 방법을 미국특허 웹 페이지에 적용한 예를 통해 그 타당성을 보인다.

  • PDF

다차원 모델링 기반의 거래분석 시스템 설계 및 구현 (Design and Implementation of Trading Analysis System based on Multi-Dimensional Modeling)

  • 이성운;최진영
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 춘계학술발표대회
    • /
    • pp.423-426
    • /
    • 2008
  • 한국증권선물거래소의 유가증권 매매체결시스템은 안정적이고 신속한 데이터 처리에 초점을 둔 시스템이다. 인터넷과 HTS(Home Trading System)의 대중화로 인해 대량의 데이터로부터 적시에 정보를 추출하고 분석하고자 하는 요구가 증가하고 있다. 그러나 현재의 통계정보시스템은 이와 같은 요구를 수용하기 어려우며 개발자의 별도 노력이 요구된다. 또한 목표성능에 대한 요구가 매우 높아짐에 따라 시스템 및 어플리케이션의 증설과 개선작업이 빈번하지만 그 효과를 예측하기 어려우며 정량화 된 근거자료의 부재로 의사결정을 지연시킨다. 따라서 이와 같은 요구사항들을 해결하기 위해 기존의 통계정보시스템을 활용하고 추가적인 데이터들을 다양한 차원에서 분석 가능하도록 웨어하우스 데이터베이스를 구축하며 성능예측을 위한 요소들을 추출하고 데이터마이닝을 수행하여 의사결정에 도움을 줄 수 있는 다차원 모델링 기반의 거래분석 시스템을 제안한다. 거래분석 시스템의 구축으로 사용자는 웹상에서 적시에 다차원 분석보고서를 생성할 수 있다. 또한 관리자는 외부적 환경변화에 따른 향후 시스템 성능 감소를 예측할 수 있으며 내부적 요인을 제어하여 이를 상쇄할 수 있는 방안을 찾을 수 있게 된다.

진화알고리즘을 이용한 클러스터링 알고리즘 (A Clustering Algorithm using the Genetic Algorithm)

  • 류정우;김명원
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 봄 학술발표논문집 Vol.27 No.1 (B)
    • /
    • pp.313-315
    • /
    • 2000
  • 클러스터링에 있어서 K-means와 FCM(Fuzzy C-means)와 같은 기존의 알고리즘들은 지역적 최소 해에 수렴될 문제와 사전에 클러스터 개수를 결정해야 하는 문제점을 가지고 있다. 본 논문에서는 병렬 탐색을 통해 최적 해를 찾는 진화 알고리즘을 사용하여 지역적 최소 해에 수렴되는 문제점을 개선하였으며, 클러스터의 특성을 표준편차 벡터를 계산하여 중심으로부터 포함된 데이터가 얼마나 분포되어 있는지 알 수 있는 분산도와 임의의 데이터와 모든 중심들간의 거리의 비율로서 얻어지는 소속정도를 고려하여 클러스터간의 간격을 알 수 있는 분리도를 정의함으로써 자동으로 클러스터 개수를 결정할 수 있게 하였다. 실험데이터와 가우시안 분포에 의해 생성된 다차원 실험데이터를 사용하여 제안한 알고리즘이 이러한 문제점들을 해결하고 있음을 보인다.

  • PDF

다차원 개념 계층을 지원하는 공간 데이터 큐브의 점진적 일괄 갱신 기법 (Incremental Batch Update of Spatial Data Cube with Multi-dimensional Concept Hierarchies)

  • 옥근형;이동욱;유병섭;이재동;배해영
    • 한국멀티미디어학회논문지
    • /
    • 제9권11호
    • /
    • pp.1395-1409
    • /
    • 2006
  • 공간 데이터 웨어하우스에서는 OLAP(On-Line Analytical Processing) 연산을 제공하기 위해 다차원 데이터를 공간 데이터 큐브의 형태로 관리한다. 개념 계층을 지원하는 공간 데이터 큐브의 크기는 삽입되는 데이터에 비해 방대하기 때문에 구축된 큐브의 구조를 최대한 유지하면서 새로 삽입되는 데이터를 반영시킬 수 있는 점진적 갱신 기법이 연구되어 왔다. 하지만 접두 및 접미의 중복을 제거하여 데이터를 압축 저장하는 큐브에서는 병합된 경로 간의 충돌로 인해 큐브 갱신 시 갱신 내용과 상관없는 셀까지 동시에 갱신되어 갱신이상 현상이 발생한다. 본 논문에서는 공간 데이터 큐브의 점진적 일괄 갱신 기법을 제안한다. 제안 기법은 갱신에 필요한 노드 복사본을 관리하는 자료 구조 및 재귀 탐색을 이용하여, 경로 간의 충돌이 발생할 경우 해당 노드의 복사본을 생성한 후 이를 갱신함으로써 갱신이상 현상을 방지한다. 이를 통해 다차원 개념 계층이 포함된 공간 데이터 큐브를 효율적으로 갱신할 수 있다. 성능 평가를 통해 기존 갱신 기법에 비해 제안 기법의 갱신 속도가 향상되었음을 보인다.

  • PDF

USN 기반의 화재감시 응용을 위한 센서 데이터 처리 시스템 (A Sensor Data Management System for USN based Fire Detection Application)

  • 박원익;김영국
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권5호
    • /
    • pp.135-145
    • /
    • 2011
  • 오늘날 센서 기술의 발전 및 보급으로 인해 USN 기반의 실시간 모니터링 응용에서의 센서 데이터 처리 시스템에 대한 연구가 활발히 진행 되고 있다. 센서 데이터는 시간에 따라 빠르게 변화하고 연속적인 저수준 상태의 방대한 양의 데이터를 생성하는 특성을 갖는다. 하지만 엔드유저는 상대적으로 고수준 상태의 데이터에 관심이 있기 때문에 빠르게 변화하고 연속적인 대량의 저수준 센서 데이터를 효과적으로 처리하는 시스템이 필수적이다. 본 논문에서는 USN 기반의 화재감시 응용에서 OLAP(On-Line Analytical Processing) 기술을 이용한 다차원 분석 질의 처리 기능과 학습기반 분류기를 통한 이상치 탐지 기능을 제공하는 센서 데이터 처리 시스템을 제안한다. 실험 시나리오를 통해 우리의 센서 데이터 처리 시스템에 대한 타당성을 검증하며 실험에 필요한 다양한 센서 데이터는 자체 개발한 센서 데이터 생성기를 이용한다.

ORB : 효율적인 질의 성능을 위한 R-tree 대량로딩 기법 (ORB : R-tree Packing for better query performance)

  • 이태원;이석호
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (A)
    • /
    • pp.743-745
    • /
    • 2003
  • R-tree는 공간 데이터나 다차원 데이터의 효율적인 질의 처리를 위한 인덱스 구조이다. 다량의 데이터로부터 빠르게 인덱스를 생성하기 위해서 많은 다량로딩 기법들이 제안되었으나 이들은 공간이용률을 극대화하는 데에 초점을 맞춰 R-tree의 목적인 효율적인 질의 처리를 위한 개선의 여지가 남아 있다. 본 논문에서는 다량로딩 과정에서 인접한 노드들간의 겹치는 영역을 감소시켜 전체적으로 질의 처리 성능을 향상시킬 수 있는 기법을 제안한다. 실험 결과에서 보이듯이 지금까지 가장 효율적이라고 알려져 있는 STR 기법보다 질의 성능이 좋게 나오는 것을 확인할 수 있다.

  • PDF

웹기반 문헌분석 및 생물학적 네트워크 분석시스템 개발 (Web based Text-mining and Biological Network Analysis System)

  • 서동민;조성훈;안광성;유석종;박동일
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2017년도 춘계 종합학술대회 논문집
    • /
    • pp.27-28
    • /
    • 2017
  • 다양한 위상학적 관계(topological relation)를 분석하는 네트워크 분석은 복잡한 데이터에서 숨어있는 특성과 사실을 발견하는 기술로 최근 빅데이터 분야에서 데이터 분석 핵심 기술로 급부상하고 있다. 본 연구에서는 질병연구에 핵심적인 생물학적 네트워크의 생성 및 사용자 친화적인 네트워크 분석시스템을 개발하였다. 개발한 시스템은 PubMed에서 특정 질병과 관련있는 논문 요약 정보를 자동 수집후 텍스트마이닝을 통해 질병 관련 화합물, 유전자 그리고 상호작용 정보를 추출해 생물학적 네트워크를 생성하는 기능을 제공한다. 또한, 연구자가 손쉽게 생성된 네트워크에 대한 검색 및 다차원 분석을 수행할 수 있는 기능을 제공한다. 마지막으로 개발한 시스템의 우수성을 입증하기 위해 크론병(Crohn's Disease)에 대한 적용사례를 소개한다.

  • PDF

텍스트 데이터 분석을 위한 근접성 데이터의 생성과 군집화 (Creation and clustering of proximity data for text data analysis)

  • 정민지;신상민;최용석
    • 응용통계연구
    • /
    • 제32권3호
    • /
    • pp.451-462
    • /
    • 2019
  • 문서-용어 빈도행렬은 텍스트 마이닝 분야에서 보편적으로 사용되는 데이터의 한 유형으로, 여러 개체들이 제공하는 문서를 기반으로 만들어진다. 그러나 대다수의 연구자들은 개체 정보에 무게를 두지 않고 여러 문서에서 공통적으로 등장하는 공통용어 중 핵심적인 용어를 효과적으로 찾아내는 방법에 집중하는 경향을 보인다. 공통용어에서 핵심어를 선별할 경우 특정 문서에서만 등장하는 중요한 용어들이 공통용어 선정단계에서부터 배제될 뿐만 아니라 개별 문서들이 갖는 고유한 정보가 누락되는 등의 문제가 야기된다. 본 연구에서는 이러한 문제를 극복할 수 있는 데이터를 근접성 데이터라 정의한다. 그리고 근접성 데이터를 생성할 수 있는 12가지 방법 중 개체 군집화의 관점에서 가장 최적화된 방법을 제안한다. 개체 특성 파악을 위한 군집화 알고리즘으로는 다차원척도법과 K-평균 군집분석을 활용한다.

Support Vector Machines를 이용한 Convex 클러스터 결합 알고리즘 (A Convex Cluster Merging Algorithm using Support Vector Machines)

  • 최병인;이정훈
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 추계학술대회 및 정기총회
    • /
    • pp.267-270
    • /
    • 2002
  • 본 논문에서는 Support Vector Machines (SVM) 을 이용하여, 빠르고 정확한 두 convex한 클러스터 간의 거리 측정 방법을 제시한다 제시된 방법에서는, SVM에 의해서 생성되는 최적 다차원 평면이 두 클러스터간의 최소 거리를 계산하는데 사용된다. 또한, 본 논문에서는 이러한 두 클러스터 간의 최적의 거리를 사용하여, Fuzzy Convex Clustering (FCC) 방법 (1) 에 의해서 생성되는 Convex 클러스터들을 묶어주는 효과적인 클러스터 결합 알고리즘을 제시하였다. 그러므로, 데이터의 부적절한 표현을 유발하지 않고도 클러스터들의 개수를 좀 더 줄일 수 있었다. 제시한 방법의 타당성을 위하여 여러 실험 결과를 제시하였다