다차원 데이터를 온라인으로 분석하기 위해서는 사전에 집계 테이블들을 계산해 둔다. 대용량 고차원 데이터의 경우는 집계 테이블의 분량이 천문학적으로 방대하기 때문에 사전 집계 계산이 현실적으로 불가능한 경우가 많다. 고차원 데이터 처리에 관한 연구로는 데이터의 차원 수를 감소시키거나 인덱스를 압축하여 질의처리 시간을 단축하려는 연구를 들 수 있는데, 이러한 방법들은 고차원 데이터의 온라인 분석시에 발생하는 데이터 폭발 현상을 근본적으로 해결하지는 못한다. 본 연구에서는 고차원 데이터가 분석될 때 실제로 저차원 집계 테이블들이 주로 사용된다는 점에 착안하여 데이터 폭발 현상을 감소시키면서 데이터를 분석하는 방안을 제시한다 이 방법은 사전 집계 연산을 할 때 크기가 방대한 고차원 집계 테이블들의 생성을 생략하고, 3-6차원 또는 그 이하 차원의 집계 테이블들만을 고속으로 동시에 생성하는 방법이다.
인터넷에 있는 방대한 양의 웹 페이지들을 분석하기 위해서는 웹 페이지에 내재된 정보를 추출하는 것이 필요하다. 본 논문에서는 웹 페이지로부터 정보를 추출하고 이를 XML 문서로 변환하여 다차원적으로 분석하는 방법을 제안한다. 웹 페이지로부터 정보를 추출하기 위하여 두 종류의 언어를 제안한다. 하나는 객체지향 모델에 의거하여 웹 정보 추출 규칙을 기술하기 위한 것이고, 다른 하나는 추출하고자 하는 정보를 찾기 위한 HTML 태그 패턴을 정규식으로 기술하기 위한 것이다. XML 문서에 대한 다차원 분석을 위하여 관계형 데이터에 대해 하는 것처럼 웨어하우스를 구축하고 이로부터 다양한 큐브를 생성하는 방법을 제안한다. 마지막으로 본 논문에서 제안한 방법을 미국특허 웹 페이지에 적용한 예를 통해 그 타당성을 보인다.
한국증권선물거래소의 유가증권 매매체결시스템은 안정적이고 신속한 데이터 처리에 초점을 둔 시스템이다. 인터넷과 HTS(Home Trading System)의 대중화로 인해 대량의 데이터로부터 적시에 정보를 추출하고 분석하고자 하는 요구가 증가하고 있다. 그러나 현재의 통계정보시스템은 이와 같은 요구를 수용하기 어려우며 개발자의 별도 노력이 요구된다. 또한 목표성능에 대한 요구가 매우 높아짐에 따라 시스템 및 어플리케이션의 증설과 개선작업이 빈번하지만 그 효과를 예측하기 어려우며 정량화 된 근거자료의 부재로 의사결정을 지연시킨다. 따라서 이와 같은 요구사항들을 해결하기 위해 기존의 통계정보시스템을 활용하고 추가적인 데이터들을 다양한 차원에서 분석 가능하도록 웨어하우스 데이터베이스를 구축하며 성능예측을 위한 요소들을 추출하고 데이터마이닝을 수행하여 의사결정에 도움을 줄 수 있는 다차원 모델링 기반의 거래분석 시스템을 제안한다. 거래분석 시스템의 구축으로 사용자는 웹상에서 적시에 다차원 분석보고서를 생성할 수 있다. 또한 관리자는 외부적 환경변화에 따른 향후 시스템 성능 감소를 예측할 수 있으며 내부적 요인을 제어하여 이를 상쇄할 수 있는 방안을 찾을 수 있게 된다.
클러스터링에 있어서 K-means와 FCM(Fuzzy C-means)와 같은 기존의 알고리즘들은 지역적 최소 해에 수렴될 문제와 사전에 클러스터 개수를 결정해야 하는 문제점을 가지고 있다. 본 논문에서는 병렬 탐색을 통해 최적 해를 찾는 진화 알고리즘을 사용하여 지역적 최소 해에 수렴되는 문제점을 개선하였으며, 클러스터의 특성을 표준편차 벡터를 계산하여 중심으로부터 포함된 데이터가 얼마나 분포되어 있는지 알 수 있는 분산도와 임의의 데이터와 모든 중심들간의 거리의 비율로서 얻어지는 소속정도를 고려하여 클러스터간의 간격을 알 수 있는 분리도를 정의함으로써 자동으로 클러스터 개수를 결정할 수 있게 하였다. 실험데이터와 가우시안 분포에 의해 생성된 다차원 실험데이터를 사용하여 제안한 알고리즘이 이러한 문제점들을 해결하고 있음을 보인다.
공간 데이터 웨어하우스에서는 OLAP(On-Line Analytical Processing) 연산을 제공하기 위해 다차원 데이터를 공간 데이터 큐브의 형태로 관리한다. 개념 계층을 지원하는 공간 데이터 큐브의 크기는 삽입되는 데이터에 비해 방대하기 때문에 구축된 큐브의 구조를 최대한 유지하면서 새로 삽입되는 데이터를 반영시킬 수 있는 점진적 갱신 기법이 연구되어 왔다. 하지만 접두 및 접미의 중복을 제거하여 데이터를 압축 저장하는 큐브에서는 병합된 경로 간의 충돌로 인해 큐브 갱신 시 갱신 내용과 상관없는 셀까지 동시에 갱신되어 갱신이상 현상이 발생한다. 본 논문에서는 공간 데이터 큐브의 점진적 일괄 갱신 기법을 제안한다. 제안 기법은 갱신에 필요한 노드 복사본을 관리하는 자료 구조 및 재귀 탐색을 이용하여, 경로 간의 충돌이 발생할 경우 해당 노드의 복사본을 생성한 후 이를 갱신함으로써 갱신이상 현상을 방지한다. 이를 통해 다차원 개념 계층이 포함된 공간 데이터 큐브를 효율적으로 갱신할 수 있다. 성능 평가를 통해 기존 갱신 기법에 비해 제안 기법의 갱신 속도가 향상되었음을 보인다.
오늘날 센서 기술의 발전 및 보급으로 인해 USN 기반의 실시간 모니터링 응용에서의 센서 데이터 처리 시스템에 대한 연구가 활발히 진행 되고 있다. 센서 데이터는 시간에 따라 빠르게 변화하고 연속적인 저수준 상태의 방대한 양의 데이터를 생성하는 특성을 갖는다. 하지만 엔드유저는 상대적으로 고수준 상태의 데이터에 관심이 있기 때문에 빠르게 변화하고 연속적인 대량의 저수준 센서 데이터를 효과적으로 처리하는 시스템이 필수적이다. 본 논문에서는 USN 기반의 화재감시 응용에서 OLAP(On-Line Analytical Processing) 기술을 이용한 다차원 분석 질의 처리 기능과 학습기반 분류기를 통한 이상치 탐지 기능을 제공하는 센서 데이터 처리 시스템을 제안한다. 실험 시나리오를 통해 우리의 센서 데이터 처리 시스템에 대한 타당성을 검증하며 실험에 필요한 다양한 센서 데이터는 자체 개발한 센서 데이터 생성기를 이용한다.
R-tree는 공간 데이터나 다차원 데이터의 효율적인 질의 처리를 위한 인덱스 구조이다. 다량의 데이터로부터 빠르게 인덱스를 생성하기 위해서 많은 다량로딩 기법들이 제안되었으나 이들은 공간이용률을 극대화하는 데에 초점을 맞춰 R-tree의 목적인 효율적인 질의 처리를 위한 개선의 여지가 남아 있다. 본 논문에서는 다량로딩 과정에서 인접한 노드들간의 겹치는 영역을 감소시켜 전체적으로 질의 처리 성능을 향상시킬 수 있는 기법을 제안한다. 실험 결과에서 보이듯이 지금까지 가장 효율적이라고 알려져 있는 STR 기법보다 질의 성능이 좋게 나오는 것을 확인할 수 있다.
다양한 위상학적 관계(topological relation)를 분석하는 네트워크 분석은 복잡한 데이터에서 숨어있는 특성과 사실을 발견하는 기술로 최근 빅데이터 분야에서 데이터 분석 핵심 기술로 급부상하고 있다. 본 연구에서는 질병연구에 핵심적인 생물학적 네트워크의 생성 및 사용자 친화적인 네트워크 분석시스템을 개발하였다. 개발한 시스템은 PubMed에서 특정 질병과 관련있는 논문 요약 정보를 자동 수집후 텍스트마이닝을 통해 질병 관련 화합물, 유전자 그리고 상호작용 정보를 추출해 생물학적 네트워크를 생성하는 기능을 제공한다. 또한, 연구자가 손쉽게 생성된 네트워크에 대한 검색 및 다차원 분석을 수행할 수 있는 기능을 제공한다. 마지막으로 개발한 시스템의 우수성을 입증하기 위해 크론병(Crohn's Disease)에 대한 적용사례를 소개한다.
문서-용어 빈도행렬은 텍스트 마이닝 분야에서 보편적으로 사용되는 데이터의 한 유형으로, 여러 개체들이 제공하는 문서를 기반으로 만들어진다. 그러나 대다수의 연구자들은 개체 정보에 무게를 두지 않고 여러 문서에서 공통적으로 등장하는 공통용어 중 핵심적인 용어를 효과적으로 찾아내는 방법에 집중하는 경향을 보인다. 공통용어에서 핵심어를 선별할 경우 특정 문서에서만 등장하는 중요한 용어들이 공통용어 선정단계에서부터 배제될 뿐만 아니라 개별 문서들이 갖는 고유한 정보가 누락되는 등의 문제가 야기된다. 본 연구에서는 이러한 문제를 극복할 수 있는 데이터를 근접성 데이터라 정의한다. 그리고 근접성 데이터를 생성할 수 있는 12가지 방법 중 개체 군집화의 관점에서 가장 최적화된 방법을 제안한다. 개체 특성 파악을 위한 군집화 알고리즘으로는 다차원척도법과 K-평균 군집분석을 활용한다.
본 논문에서는 Support Vector Machines (SVM) 을 이용하여, 빠르고 정확한 두 convex한 클러스터 간의 거리 측정 방법을 제시한다 제시된 방법에서는, SVM에 의해서 생성되는 최적 다차원 평면이 두 클러스터간의 최소 거리를 계산하는데 사용된다. 또한, 본 논문에서는 이러한 두 클러스터 간의 최적의 거리를 사용하여, Fuzzy Convex Clustering (FCC) 방법 (1) 에 의해서 생성되는 Convex 클러스터들을 묶어주는 효과적인 클러스터 결합 알고리즘을 제시하였다. 그러므로, 데이터의 부적절한 표현을 유발하지 않고도 클러스터들의 개수를 좀 더 줄일 수 있었다. 제시한 방법의 타당성을 위하여 여러 실험 결과를 제시하였다
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.