• Title/Summary/Keyword: 다짐

Search Result 1,114, Processing Time 0.021 seconds

Study on the Behavior of Sabkha Deposit during Dynamic Compaction (사브카 지반 동다짐 공법 적용 시 지반거동 분석)

  • Moon, Joon-Shik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.103-111
    • /
    • 2017
  • Saudi Arabia coastal area is highly valuable construction as a flat area covered by sabkha deposit. However, sabkha deposit has some geotechnical problems because of high groundwater level, high salt contents in groundwater, loose density, and possibility of collapsible settlement due to presence of crystals vulnerable to moisture, and ground improvement is needed to improve the bearing capacity. In this study, the characteristics of the sabkha soils in the coastal area of Saudi Arabia were analyzed and the applicability of dynamic compaction method was evaluated. Parametric study was conducted to analyze the behavior of sabkha deposit during dynamic compaction. The appropriateness of the proposed analytical solutions to estimate the depth of improvement was evaluated, and the troubles and notes in applying dynamic compaction in sabkha deposit were discussed.

A Study on Improvement of Road Compaction Method in Soft Ground (연약지반 상 노상다짐 방법 개선에 대한 연구)

  • Choi, Hyeonsuk;Jang, Hohun
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.427-437
    • /
    • 2019
  • The purpose of this study is to improve construction cost, time, and field management when constructing a road on soft soil foundation by eliminating extra-banking of subgrade layer after completion of the consolidation process. The subgrade layer was pre-constructed before the soft ground improvement. And then it was confirmed by the field test that the compaction effect was maintained or not after consolidation settlement. As a result of the experiment, all subgrade layers were kept constant except for the top subgrade layer. So it would be advantageous to secure economical and practical in road construction if subgrade layers were constructed exclusive of the top subgrade layer.

Laboratory Loading Test of Light-Weight Prefabricated Plastic Foundation for Sewage Pipe Line (하수관거용 플라스틱 조립식 경량기초의 하중재하실험)

  • Lee, Dong-Hang;Lee, Kwan-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.6
    • /
    • pp.2757-2762
    • /
    • 2012
  • Sewage pipelines are one of important infra-structures. The main reasons of sewage pipelint failure are improper backfill materials and compaction controls in field. Especially, it is very difficult to compact the lower part of circula pipelines. In order to overcome these problems, the prefabricated light-weight plastic foundation was developed. Couple of load-displacement tests were carried out to get the characteristic of failure. From the limited laboratory loading tests, the use of prefabricated light-weight plastic foundation is an alternative to solve the difficulty of backfill materials and compaction control.

A Study on the Stress Concentration of Crushed-stone Compaction Piles through Field Loading Test (현장재하시험을 통한 쇄석다짐말뚝의 응력분담에 관한 연구)

  • 이민희;최용규;임종철;황근배
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.107-114
    • /
    • 2003
  • Among soft ground treatment methods with granular soil used in domestic, the sand compaction pile method has been utilized greatly, but, as a result of exhaustion of sand and increase of unit cost, the necessity of an alternative method is suggested. In this study, the static load tests for crushed-stone compaction piles which were constructed on test field were performed. Based on test results, stress concentration ratios between the crushed-stone compaction pile and the soft ground were investigated and estimated. At loading pressure, settlement showed decreasing tendency as replacement rate increases. At replacement rate of 20%, yield pressure was smaller but, at replacement rates of 30% and 40%, settlement and yield pressure were similar. The stress concentration ratio was within the range of 1.7 to 3.0 and it was higher as replacement rate increased.

Study on Lond Transfer Characteristics of Sand Compaction Piles in Soft Soil Deposits (연약지반의 모래다짐말뚝에 대한 하중전이 연구)

  • Kim Jaekwon;Kim Soo-Il;Jung Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.183-196
    • /
    • 2004
  • Sand Compaction Pile (SCP) is a soft-ground improvement technique used for not only accelerating consolidation but also increasing bearing capacity of soils. In this study, laboratory tests and 3-D finite element analysis were peformed to investigate the characteristics of load transfer in SCP with an emphasis on free-strain behavior of piles with low replacement ratios in the range of 30 to $50\%$. Through these focused tests and numerical analyses, we proposed a simplified method to analyze the load transfer characteristics of SCP in soft ground. Moreover, it was shown that estimated normal stresses in SCP using the proposed method were in a reasonable agreement with actual values.

Analysis of the Demage of Structures by Dynamic Compaction (동다짐에 의한 인접구조물 피해 분석)

  • Song, Jeong-Rak;Han, Wan-Gyun;Sin, Seung-Cheol
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1993.06a
    • /
    • pp.55-72
    • /
    • 1993
  • Dynamic compaction may cause some demages to structures becasue it uses the impact energy of heavy weight with high drop height. This study measured and analyzed the vibrations at the (bnamic compaction site which was composed of man-made land fill. From the vibration analysis, it was found that the particle velocity and attenuation was greatest in longitudinal direction and smallest in transversal direction, the dominant frequency ranged from 7 Hz to 9 Hz and the structural damage could be prevented by reducing the drop height at the vicinity of the vibration sentialive structures. Also, the damage to the office equipment could be prevented by doing the dynamic compaction work curing closed-office hours.

  • PDF

DYNAMIC PROPERTIES OF WASTE FILL SUBJECTED TO DYNAMIC COMPACTION (쓰레기 매립지반에서의 진동 동다짐 특성)

  • 송정락
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1993.06a
    • /
    • pp.83-116
    • /
    • 1993
  • This article analyzed the dynamic compaction incuced vibration of man made waste landfill. General dynamic properties and compaction-condition-related dynamic properties were analyzed. from the results, it was turned out that the shear modulus G=17496-58320 t/m2, dannpln ratio D=14~58%, dominant frequency f=6-14Hz. Also, it was turned out that the propagation velocitis of low amplitude shear wave and compressive wave were increased as the number of impact increased, the relation between peak particle velocity, and impact distance was wpp=5.08.[D/r E]-1.4, the peak particle velocity was high at the lower part of the waste fill layer and the range of dynamically improved area was about 6-10m.

  • PDF

The Settlement Behavior of Dynamically Compacted High Rock Embankment (고성토 암버력 동다짐 지반의 침하거동)

  • Jie, Hong-Keun;Bae, Kyung-Tae;Noh, Jeong-Huyn;You, Kwang-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.4
    • /
    • pp.61-69
    • /
    • 2012
  • A high rock embankment by means of phased dynamic compaction has hardly carried out in Korea. Settlement of each layer is measured in order to verify the settlement behavior of dynamically compacted high rock embankment. A high rock embankment is generally constructed by dividing into several sub-embankments. Such a sub-embankment and dynamic compaction may induce an increase of pressure at the lower part of embankment and cause a different behavior of ground from initial status. In this study, settlement of a high rock embankment is estimated using a hyperbolic model taking into construction history. The results from prediction are compared with those obtained from field measurements. And second creep settlement is predicted using pre-loading test.

Analysis of Levee Infiltration in Flood-time (홍수시 제방의 침투 해석에 대한 연구)

  • Lee, Nam-Joo;Yu, Kwon-Kyu;Lee, Sang-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1878-1882
    • /
    • 2010
  • 이 연구는 제방의 침투 수리모형 실험의 자료를 이용해 안전도 평가 지표 선정을 위한 자료 제공하고 향후 수행할 침투 수치모의에 필요한 보정 및 검증 자료를 확보할 목적으로 수행하였다. 제방 축조 현장에서 구한 제체재료를 사용하여 실험실에 제방축소모형을 $14.5m{\times}0.6m{\times}1.6 m$의 수조 내부에 제작하였다. 제방 사면의 경사는 1:2, 제방 저면의 길이는 4.60 m, 제방 상부의 길이는 2.40 m, 제체의 높이는 0.55 m로 제작하였다. 모형제방은 제방축조 방법과 유사하게 다짐을 하기위해 흙을 쌓으면서 0.20 m 높이 마다 다짐을 실시하였다. 다짐방법은 고무망치를 이용한 층다짐을 하였다. 들밀도실험에 의한 제방모형의 건조단위중량과 다짐도는 각각 1.71g/cm3, 93%로 측정되었다. 홍수위 증가에 따른 비정상 상태의 침투수위 측정을 수행하였다. 수리모형실험은 약 8일 동안 수행하였다. 침윤선의 수두와 위압계별 수두는 상류쪽(제외지 사면)부터 증가하기 시작하며 하류쪽(제내지 사면)로 확장됨을 알 수 있으며, 실험 초기에는 상류쪽의 수두가 급격히 상승하지만, 점차 상승속도가 둔화되는 등의 일반적인 경향이 나타나고 있음을 확인할 수 있다. 실험시작 18시간 경과 후부터 제외지 사면 하단부에서 유출이 발생하였으며, 21시간 경과 후부터는 상류부의 수두가 안정되는 현상이 나타났다. 측정된 침투수위의 변화 양상은 향후 수치모형을 이용한 침투해석의 검보정 자료로 활용할 계획이다.

  • PDF

A Study on the Effects of Sample Preparation on Liquefaction Estimation Using Cyclic Triaxial Test Conditions (시편의 성형방법이 반복삼축압축시험을 이용한 지반의 액상화 평가에 미치는 영향에 관한 연구)

  • 이익효;김동수;김준석;황지훈;서성호
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.57-64
    • /
    • 2003
  • The liquefaction potential of saturated sands under seismic loading conditions has been carefully considered by many investigations. Typical of these investigations is the laboratory determination of cyclic strength of sands by means of cyclic triaxial tests. This study was conducted to investigate the effects of the method of sample preparation on the liquefaction characteristics of remolded samples of saturated uniform sands. Cyclic triaxial tests were performed on saturated uniform sand compacted to the same density by 3 different procedures of pluvial compaction through air, pluvial compaction through water and vibratory compaction. It was validated that the cyclic stress ratio of remolded saturated uniform sands by different compaction procedures at the same density was very different.