• Title/Summary/Keyword: 다짐관리

Search Result 159, Processing Time 0.031 seconds

Study on the Optimal Construction Method for the Compaction Method of Hydraulic Filling in Metropolitan Areas (도심지 물다짐 공법의 적정 시공방법에 관한 연구)

  • Jeong, Dal-Yeong;Jang, Jong-Hwan;Chung, Jin-Hyuck
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.175-181
    • /
    • 2020
  • This paper suggests a proper hydraulic filling method in downtown areas. Road subsidence on roadways and sidewalks in downtown areas can result in vehicle damage and casualties. The representative cause of road subsidence is the fraudulent construction in nearby construction sites. A deficiency of excavation restoration causes approximately 25~49% of subsidence. This is performed by equipment or manpower. Hydraulic filling is used in backfilling narrow pipe conduits and spaces between structures. On the other hand, standard specifications and quality assurance standards regarding hydraulic filling principles and construction conditions are insufficient. Therefore, in-door model experiments on hydraulic filling principles, backfilling material, and compaction efficiency were performed. This paper suggests guidelines by investigating and analyzing construction status. In conclusion, thrown backfilling material has a particle size distribution and permeability coefficient as major factors, and detailed standards of the factors are suggested. To improve the compaction efficiency, 90% or more, compaction by the floor should be in units of 0.3m while ensuring a lower drainage layer. When an H-shape stabilizing pile is pulled out after filling, additional hydraulic filling should be in the disturbance range.

Development of Intelligent Compaction System for Efficient Quality Control (효율적 품질관리를 위한 지능형 다짐 시스템 개발)

  • Lee, Soomin;Park, Sangil;Lee, Riho;Seo, Jongwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.751-760
    • /
    • 2018
  • Currently, the quality measurement of the work is carried out by the supervisor's visual inspection, as the workers individually judge the number of resolutions, thickness, speed and vibration. After work, we are conducting follow-up work through traditional spot test, which is less representative. Therefore, it is impossible to check the results of the resolution, and there is always the possibility that problems will arise due to poor construction. This study demonstrates the feasibility of using the continuous compaction strength measurement method by comparing the continuous compaction strength measurement method and the conventional compaction strength measurement method after performing the compaction in the actual field scale in various test conditions. The validity is verified by analyzing the Compaction Meter Value of an Intelligent Compaction roller composed of a Global Positioning System and an accelerometer, Based on the proven results, a full range of quality can be confirmed without a single test. The quality confirmation is visualized in the compaction control program developed in this study, This enables the field manager to perform real-time quality monitoring at the same time as compaction.

Strength and Earth Pressure Characteristics of Industrial Disposal Flowable Filling Materials Utilizing Backfiller (뒤채움재로 사용된 산업폐기물 유동화 처리토의 강도 및 토압특성)

  • Bang, Seongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.3
    • /
    • pp.5-13
    • /
    • 2021
  • Due to population growth and industrial development, the amount of industrial waste is increasing every year. In particular, in a thermal power plant using finely divided coal, a large amount of coal ash is generated after combustion of the coal. Among them, fly ash is recycled as a raw material for cement production and concrete admixture, but about 20% is not utilized and is landfilled. Due to the continuous reclamation of such a large amount of coal ash, it is required to find a correct treatment and recycling plan for the coal ash due to problems of saturation of the landfill site and environmental damage such as soil and water pollution. In recent years, the use of a fluid embankment material that can exhibit an appropriate strength without requiring a compaction operation is increasing. The fluid embankment material is a stable treated soil formed by mixing solidifying materials such as water and cement with soil, which is the main material, and has high fluidity before hardening, so compaction work is not required. In addition, after hardening, it is used for backfilling or filling in places where compaction is difficult because higher strength and earth pressure reduction effect can be obtained compared to general soil. In this study, the possibility of use of fluidized soil using high water content cohesive soil and coal ash is considered. And it is intended to examine the flow characteristics, strength, and bearing capacity characteristics of the material, and to investigate the effect of reducing the earth pressure when applied to an underground burial.

Development of DCPT Equipment based on IoT for Rod Tamping in Smart Construction (스마트건설 토공사 다짐 측정을 위한 IoT 기반의 DCPT 기술개발)

  • Park, Hong-Gi;Bae, Kyoung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.501-509
    • /
    • 2020
  • Earthwork in the construction field is a core process of construction, and it is used in almost all processes and is connected to the safety of the structure directly. Therefore, it is essential to analyze and confirm the road tamping through a plate bearing test and a field density test. The current analog measurement methods for road tamping measurement is difficult to check in real-time, accurate location information, time information, and the history management of workers in the field. Therefore, IoT (Internet of Things)-based DCPT (Dynamic Cone Penetration Test) was developed for a smart construction environment with a solution to the problem. The Smart DCPT system operated in a smartphone environment is IoT-based. The Smart DCPT system can apply various applications and has advantages of flexibility, low cost, and high efficiency. The IoT-based DCPT records the digital road tamping information, location information, time information, and worker information per measurement count. In addition, the various information is transmitted in real-time to the management center through a smartphone. This system is expected to contribute to the management of the construction process.

The Study of Compaction Characteristics of Cataclasite Fill Material using Large and Standard Compaction Tests (대형다짐시험 및 표준다짐시험을 이용한 파쇄암 성토재의 다짐특성 연구)

  • Jeoung, Jae-Hyeung;Ryu, Sang-Hun;Choi, Dong-Yub;Park, Kwang-Sik;Hwang, Sung-Pil
    • The Journal of Engineering Geology
    • /
    • v.26 no.4
    • /
    • pp.439-445
    • /
    • 2016
  • The new airports apply the systematic runway foundation construction to build the high quality runways in order to take the leading position to win future aerial demands and stay ahead of competitors. This study is intended to supplement the weakness of existing standard compaction test to minimize residual settlement of lower weak foundation during operation of passenger berthage. The fill material was sampled from 4 construction sites using the fill material with diameter of 100mm or less, and the standard compacting test (KS F 2312), large circular mold compacting test, and water-replacement field density test (ASTM D 5030) were conducted. The regression analysis of correlation of the field density test and the standard indoor compaction test showed the unreliable value at P-value of 0.05, and the regression analysis of the field density test and the large indoor compaction test showed the high correlation with R value of 0.8878. It is judged that the construction of overall uniform quality can be assured as the site condition is truly reflected only if the compacting test method is selected in consideration of maximum size of fill material when evaluating the maximum dry density used in design and construction.

Evaluations on the Compaction Energy Effects on the Soil Compaction at Sub-Zero Temperature (영하에서의 다짐에너지에 따른 다짐 효과 평가)

  • Lee, Jeonghyeop;Hwang, Bumsik;Chae, Deokho;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.8
    • /
    • pp.13-20
    • /
    • 2015
  • Due to the population growth and exhaustion of resource, the development on the harsh environment such as cold weather is emerging as an alternative for new resource development. The permafrost area covers about 14 percent of the world's land area and the global construction market for such area is rapidly expanded. Whereas the developed countries have already recognition of the need for research of coldest place and invested heavily in technology development, the domestic technology for the coldest place development is less developed and related research has rarely been performed. There is not a detailed national specification standard for the strength and deformation properties of the earthworks at sub-zero temperature but simple field directions. Therefore, the D compaction tests were conducted on the sand with fine contents of 0%, 5%, 10% and 15% at room temperature ($18^{\circ}C$), $-3^{\circ}C$ and $-8^{\circ}C$ to investigate the effect of the compaction energy on the compacted soils at sub-zero temperatures. Based on the test results, the larger compaction energy, the larger maximum dry unit weight under sub-zero temperature and D type compaction at $-3^{\circ}C$ show similar max. dry unit weights as those obtained from the compaction at the room temperature. However, compaction at $-8^{\circ}C$ showed significant performance degradation regardless of the compaction energy.

Prediction of the Elastic Modulus of Improved Soil Using the Flat TDR System (판형 TDR 시스템을 이용한 개량지반의 탄성계수 예측)

  • Song, Minwoo;Kim, Wanmin;Kim, Daehyeon;Choi, Chanyong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.3
    • /
    • pp.77-85
    • /
    • 2016
  • This study was conducted to solve the problem such as damage of completed compaction ground using the conventional compaction control method. In this study, a TDR system equipped with a flat type probe has been developed. Also, the Piezoelectric stack, which is an instrument for measuring the elastic wave on the ground, has been added to the developed flat type probe. In this study, the strength variation of reinforced soil with time was determined by using the TDR system. The value of compression and shear modulus increased from 198.65MPa to 541.80MPa and from 125.55MPa to 302.02MPa with time, respectively. Based on the test results, it has been confirmed that the developed TDR system can be used as reinforced effect analysis of soil and compaction control.

A Study on Various Soil Stiffness Evaluation Methods with Field Test (현장시험을 통한 다양한 지반강성 평가방법에 대한 연구)

  • Yoo, Wan-Kyu;Kim, Byoung-Il;Kim, Ju-Hyong;Park, Keun-Bo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1373-1380
    • /
    • 2010
  • The plate loading test(PLT) and the field density test are mainly used on the construction of embankments to control the compaction of a limited layer thickness. These two test methods are very time consuming and inefficient, but they are still commonly used as the methods of quality control for soil compaction. In the last 3 decades, many devices such as geogauge, light falling weight deflectometer(LFWD) and dynamic cone penetrometer(DCP) etc., have been introduced into the engineering market with the objective of acquiring in situ stiffness properties of the compacted soil layers. Recently, a new type of sensor, called compactometer, which in mounted on the drum of a roller and measures impact forces continuously with GPS, called as Continuous Compaction Control(CCC), has come into use in many countries such as America, Germany, Japan and so on. The main objective of this paper is to assess the potential use of these new devices as quality control and assurance devices for compacted soil layers. Based on this study, compactometer and the LFWD results werestrongly correlated with the result obtained from the PLT and the field density test.

A Study on the Evaluation of the Effect of the Ground Improvement of Reclaimed Land Based on Dynamic Compaction Method (동다짐 공법이 적용된 준설매립지반의 개량효과 평가에 관한 연구)

  • Kim Jong-Kook;Chae Young-Su
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.5
    • /
    • pp.13-26
    • /
    • 2006
  • The purpose of this study is to examine the method of liquifaction potential occuring at the reclaimed land in Incheon district and to compare the result obtained by the method based on the earthquake of 6.5 magnitude. In addition, the effects of ground improvement and liquifaction potential were evaluated on the basis of SPT and CPT, which have been performed before and after the compaction pilot test. As a result, we realized that the bigger the energy of dynamic compaction test was, the better effect we got. After the dynamic compaction test, as the strength of ground increased, the safe factor also increased. It was evaluated that the method of dynamic compaction improved the seismic performance. Accordingly, the method of the quality control of reclaimed land based on dynamic compaction method was presented.